gegenseitige Lage von Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Welche gegenseitige Lage haben die Gerade g, die durch die Punkte A und B geht, und die Gerade h, die durch den Punkt P geht und den Richtungsvektor [mm] \vec{a} [/mm] besitzt?
a) A(0; 4; -3), B(-1; 1; -1), P(3; -2; 5), [mm] \vec{a}=\vektor{3 \\ 9 \\ -6}
[/mm]
b) A(7; -2; 1), B(4; 5; 5), P(4; 2; 5), [mm] \vec{a}=\vektor{1 \\ -1 \\ 1}
[/mm]
c) A(8; -3; 1), B(0; 0; 0), P(2; -3; 5), [mm] \vec{a}=\vektor{5 \\ -12 \\ 8} [/mm] |
Ich muss ein Gleichungssystem aufstellen, weiß aber nicht wie und wie ich dann weiter vorgehen soll...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:24 Fr 15.09.2006 | Autor: | riwe |
hallo "nixwissern", hallo katrin:
dann stelle doch einmal die beiden geradengleichungen auf, bei a)
g: [mm] \vec{x}=\vektor{0\\4\\-3}+t\vektor{-1-0\\1-4\\-1+3}
[/mm]
h: [mm] \vec{x}=\vektor{3\\-2\\5}+s\vektor{3\\9\\-6}
[/mm]
und jetzt setzt du g = h und löst das lgs.
je nach anzahl der lösungen sind die geraden identisch, parallel, windschief oder schneiden sich, wobei unter umständen auch noch die richtúngsvektoren zu betrachten sind, was gerade hier wichtig ist.
|
|
|
|
|
sorry aber hier weiß ich auch nicht wie ich das gls aufstellen soll und wie ich dann an den lösungen erkenne, welche lage die zueinander haben.....
ich kapier das nich!!!
:-(
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:34 Sa 16.09.2006 | Autor: | riwe |
weil heute fast sonntag ist:
du stellst einfach die einzelnen komponenten gegenüber, also
0 - t = 3 + 3s
4 - 3t = -2 + 9s
-3 + 2t = 5 - 6s
aus der 1. gleichung hast du sofort t = -3 - 3s
das in die 2. eingesetzt liefert
4 + 9 + 9s = -2 + 9s
13 = -2
also ergibt sich ein widerspruch, das gleichungssystem besitzt keine lösung.
nun haben wir folgende möglichkeiten
1) das system hat eine eindeutige lösung => die beiden geraden schneiden sich, den schnittpunkt bekommst du, indem du für s bzw. t den entsprechenden wert einsetzt
2) du bekommst unendlich viele lösungen, dann steht da z.b 13 = 13, dann sind die beiden geraden identisch
3) du erhältst einen widerspruch, wie oben
3.1) die beiden geraden sind parallel aber nicht identisch
3.2) die beiden geraden sind windschief.
um dies zu unterscheiden, mußt du in diesem fall die beiden richtungsvektoren der geraden anschauen, sind sie linear abhängig (= ist der eine ein beliebiges vielfaches des anderen), so sind sie parallel ansonsten windschief.
hier hast du
[mm] \vec{v}_1= \vektor{-1\\-3\\2}
[/mm]
[mm] \vec{v}_2= \vektor{-3\\-9\\-6}=-3\cdot\vec{v}_1= \vektor{-1\\-3\\2}
[/mm]
also ist der richtungsvektor von h das (-3)-fache des richtungsvektors von g.
den richtigen schluß daraus zu ziehen, überlasse ich nun dir
|
|
|
|