g, f1, f2 Messbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:03 Do 02.05.2019 | Autor: | TS85 |
Aufgabe | Sei (X, [mm] \mathcal{A}) [/mm] ein messbarer Raum und seien [mm] f_1,f_2 [/mm] : X [mm] \to \IR \mathcal{A}-\mathcal{B}(\IR)-messbar.
[/mm]
a) Sei ferner g: [mm] \IR^2 \to \IR \mathcal{B}(\IR^2)-\mathcal{B}(\IR)-messbar. [/mm] z.z. ist g [mm] \circ (f_1, f_2) [/mm] : X [mm] \to \IR [/mm] ist [mm] \mathcal{A}-\mathcal{B}(\IR)-messbar.
[/mm]
Verwendbar ohne Beweis: [mm] \mathcal{B}(\IR)\otimes\mathcal{B}(\IR) [/mm] = [mm] \mathcal{B}(\IR^2)
[/mm]
b)Folgern Sie die [mm] \mathcal{A}-\mathcal{B}(\IR)-Messbarkeit [/mm] von [mm] f_1+ f_2, f_1 [/mm] * [mm] f_2 [/mm] und [mm] c*f_2 [/mm] für c [mm] \in \IR.
[/mm]
[mm] (\IR-Algebra) [/mm] |
Meine Frage zu a):
Mir ist leider unbekannt, wie sich eine Verkettung der Form
g [mm] \circ (f_1,f_2) [/mm] darstellt, sonstige Hinweise wären auch nicht schlecht.
zu b)Ist hier zu zeigen [mm] \{y \in X | f_1(y)+f_2(y)>a\} \in \mathcal{A}? [/mm] Dies ist vermutlich nur der Beweis dafür, dass [mm] f_1+f_2 [/mm] messbar ist.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:19 Fr 03.05.2019 | Autor: | fred97 |
> Sei (X, [mm]\mathcal{A})[/mm] ein messbarer Raum und seien [mm]f_1,f_2[/mm] :
> X [mm]\to \IR \mathcal{A}-\mathcal{B}(\IR)-messbar.[/mm]
>
> a) Sei ferner g: [mm]\IR^2 \to \IR \mathcal{B}(\IR^2)-\mathcal{B}(\IR)-messbar.[/mm]
> z.z. ist g [mm]\circ (f_1, f_2)[/mm] : X [mm]\to \IR[/mm] ist
> [mm]\mathcal{A}-\mathcal{B}(\IR)-messbar.[/mm]
> Verwendbar ohne Beweis:
> [mm]\mathcal{B}(\IR)\otimes\mathcal{B}(\IR)[/mm] =
> [mm]\mathcal{B}(\IR^2)[/mm]
>
> b)Folgern Sie die [mm]\mathcal{A}-\mathcal{B}(\IR)-Messbarkeit[/mm]
> von [mm]f_1+ f_2, f_1[/mm] * [mm]f_2[/mm] und [mm]c*f_2[/mm] für c [mm]\in \IR.[/mm]
>
> [mm](\IR-Algebra)[/mm]
> Meine Frage zu a):
> Mir ist leider unbekannt, wie sich eine Verkettung der
> Form
> g [mm]\circ (f_1,f_2)[/mm] darstellt, sonstige Hinweise wären auch
> nicht schlecht.
Setzen wir $h:=g [mm] \circ (f_1,f_2)$, [/mm]
also $h:X [mm] \to \IR$ [/mm] und [mm] $h(x)=g(f_1(x),f_2(x))$ [/mm] für $x [mm] \in [/mm] X.$
Zeigen sollst Du nun (das übliche):
für $B [mm] \in \mathcal{B}(\IR)$ [/mm] ist [mm] $h^{-1}(B) \in \mathcal{A}$.
[/mm]
>
> zu b)Ist hier zu zeigen [mm]\{y \in X | f_1(y)+f_2(y)>a\} \in \mathcal{A}?[/mm]
> Dies ist vermutlich nur der Beweis dafür, dass [mm]f_1+f_2[/mm]
> messbar ist.
Oft ist es so, dass man für Aufgabenteil b) den Aufgabenteil a) verwenden kann und soll !
Ich mach Dir ein Beispiel: für die Messbarkeit von [mm] f_1+f_2, [/mm] definiere g(x,y)=x+y und wende Teil a) an.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:58 Fr 03.05.2019 | Autor: | TS85 |
d.h. ersteinmal, dass
[mm] h^{-1}(B) [/mm] = [mm] g^{-1}(f_1^{-1}(B), f_2^{-1}(B)) [/mm] ist für B [mm] \in \mathcal{B}(\IR).
[/mm]
Dabei ist [mm] f_1^{-1}(B) [/mm] und [mm] f_2^{-1}(B) [/mm] eine Teilmenge von [mm] \mathcal{A}.
[/mm]
Besteht der Zusammenhang jetzt darin, dass gilt
[mm] \mathcal{B}(\IR^2) [/mm] = [mm] \mathcal{A}_\sigma (\pi_1^{-1}(\mathcal{B}_1(\IR)) \cup \pi_2^{-1}(\mathcal{B}_2(\IR))), [/mm] wodurch gilt (da alle Abbildungen messbar) sind, auch die gesamte Abbildung messbar ist?
D.h. aus dieser Darstellung folgt die [mm] \mathcal{A}-\mathcal{B}(\IR)-Messbarkeit?
[/mm]
Geht dies in die richtige Richtung oder habe ich mir das gerade zusammengesponnen?
|
|
|
|
|
Hiho,
> d.h. ersteinmal, dass
> [mm]h^{-1}(B)[/mm] = [mm]g^{-1}(f_1^{-1}(B), f_2^{-1}(B))[/mm] ist für B [mm]\in \mathcal{B}(\IR).[/mm]
Es ist $h = [mm] g\circ (f_1,f_2)$, [/mm] dann ist [mm] $h^{-1}(B) [/mm] = [mm] \left(g\circ (f_1,f_2)\right)^{-1}(B) \not= \left(g^{-1}\circ (f^{-1}_1,f^{-1}_2)\right)(B)$, [/mm] sondern?
Schreiben wir es dazu mal anschaulicher mit der Pfeilnotation und betrachten das Bild einer Menge [mm] $A\subseteq [/mm] X$ unter h, also $h(A) = [mm] g(f_1(A),f_2(A))$, [/mm] dann genügt das folgender Abbildungsreihenfolge:
$A [mm] \overset{(f_1,f_2)}{\longrightarrow} \left(f_1(A),f_2(A)\right) \overset{g}{\longrightarrow} g\left(f_1(A),f_2(A)\right)$
[/mm]
Mit $B = [mm] \left(f_1(A),f_2(A)\right) \subseteq \IR^2, [/mm] C = [mm] g\left(f_1(A),f_2(A)\right) \subseteq \IR$ [/mm] sieht das ganze dann also so aus:
$A [mm] \overset{(f_1,f_2)}{\longrightarrow} [/mm] B [mm] \overset{g}{\longrightarrow} [/mm] C$
Nun willst du Urbilder betrachten, du fängst also rechts mit einem $C [mm] \in \mathcal{B}(\IR)$ [/mm] an und möchtest dazu wissen, wie dein A aussieht... nun hangel dich mal an obiger Grafik zurück, welches Urbild musst du also zuerst betrachten?
> Geht dies in die richtige Richtung oder habe ich mir das gerade zusammengesponnen?
Die Argumentation ist viel einfacher.... versuch dich mal oben an den sauberen Urbildern.
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:51 Sa 04.05.2019 | Autor: | TS85 |
Nach einer etwas schwierigeren Recherche habe ich
die Grundlage gefunden, dass [mm] (f\circ g)^{-1} [/mm] = [mm] g^{-1}\circ f^{-1}
[/mm]
ist.
D.h. für ein C [mm] \in \mathcal{B}(\IR) [/mm] ist [mm] g^{-1}(C) [/mm] = B [mm] =(B_1,B_2) \subseteq \mathcal{B}(\IR^{2}).
[/mm]
Und [mm] (f_1(B_1),f_2(B_2))^{-1} [/mm] =A [mm] \subseteq \mathcal{B}(\IR),
[/mm]
weswegen [mm] g\circ (f_1,f_2) \mathcal{A-B}-messbar [/mm] ist.
Was genau mir hier allerdings [mm] \mathcal{B}(\IR)\otimes\mathcal{B}(\IR) [/mm] = [mm] \mathcal{B}(\IR^2) [/mm] bringen soll ist mir nicht ganz klar. Natürlich ist dies dergleiche Wechsel von [mm] \IR^1 [/mm] zu [mm] \IR^2 [/mm] wie von A zu B oder C zu B, allerdings was ist hier der genaue Zusammenhang?
Formal ist das Ganze (oben) vermutlich auch noch nicht richtig.
|
|
|
|
|
Hiho,
> Nach einer etwas schwierigeren Recherche habe ich
> die Grundlage gefunden, dass [mm](f\circ g)^{-1}[/mm] = [mm]g^{-1}\circ f^{-1}[/mm]
>
> ist.
Jo, genau das solltest du auch aus meinen Ausführungen entnehmen.
Drehen wir die Pfeile um, erhalten wir nämlich:
$ A [mm] \overset{(f_1^{-1},f_2^{-1})}{\longleftarrow} [/mm] B [mm] \overset{g^{-1}}{\longleftarrow} [/mm] C $
> D.h. für ein C [mm]\in \mathcal{B}(\IR)[/mm] ist [mm]g^{-1}(C)[/mm] = B
> [mm]=(B_1,B_2) \subseteq \mathcal{B}(\IR^{2}).[/mm]
Nicht [mm] \subseteq [/mm] sondern [mm] $\in$, [/mm] ansonsten
> Und [mm](f_1(B_1),f_2(B_2))^{-1}[/mm] =A [mm]\subseteq \mathcal{B}(\IR),[/mm]
Warum sollte das gelten?
Erstmal ist $A [mm] \in \mathcal{A}$, [/mm] dann: Warum sollten [mm] B_1 [/mm] und/oder [mm] B_2 [/mm] als Teilmengen von [mm] \IR [/mm] meßbar sein?
Also wieso sollte gelten: $A [mm] \times [/mm] B [mm] \in \mathcal{B}(\IR^{2}) \Rightarrow [/mm] A [mm] \in \mathcal{B}(\IR) \wedge [/mm] B [mm] \in \mathcal{B}(\IR)$?
[/mm]
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:52 Sa 04.05.2019 | Autor: | TS85 |
Ich habe mich bei der [mm] \mathcal{A-B}(\IR)-Messbarkeit [/mm] vertan, es müsste (wie gesagt) A [mm] \in \mathcal{A} [/mm] heißen.
Ist mit "Warum sollte das gelten" gemeint, [mm] \underline{wieso} [/mm] es gilt oder es ergibt hier [mm] \underline{keinen Sinn}?
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:54 So 05.05.2019 | Autor: | Gonozal_IX |
Hiho,
> Ist mit "Warum sollte das gelten" gemeint,
> [mm]\underline{wieso}[/mm] es gilt oder es ergibt hier
> [mm]\underline{keinen Sinn}?[/mm]
es sollte heißen: Es bedarf einer Begründung, im Allgemeinen gilt das nämlich nicht.
Dafür brauchst du [mm] $\mathcal{B}(\IR) \otimes \mathcal{B}(\IR) [/mm] = [mm] \mathcal{B}(\IR^2)$
[/mm]
Gruß,
Gono
|
|
|
|