www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - f-invariant
f-invariant < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f-invariant: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Do 10.05.2007
Autor: clover84

Aufgabe
geg: Sei V ein endlichdimensionaler VR, 0 [mm] \not= [/mm] f [mm] \in [/mm] End(V) mit [mm] f^n [/mm] = 0 für ein n [mm] \in \IN. [/mm] Sei W der Eigenraum zum Eigenvektor 0

z.z.: Ist V = U [mm] \oplus [/mm] W, so ist U nicht f-invariant.

Hallo zusammen,

ich weiß nicht so recht, ob mein Beweis richtig ist. Könnte sich das bitte jemand ansehen:

Beweis:

Annahme: f(U) [mm] \subseteq [/mm] U
Wähle ein x [mm] \in [/mm] U mit x [mm] \not= [/mm] 0. Ein solches x existiert, da U [mm] \oplus [/mm] W = V, aber V [mm] \not= [/mm] W.
Dann gilt f(x) [mm] \in [/mm] U und f(x) [mm] \not= [/mm] 0, da sonst x [mm] \in [/mm] W wäre. Induktiv folgt nun [mm] f^n(x) \in [/mm] U und [mm] f^n(x)\not= [/mm] 0 für alle n [mm] \in \IN, [/mm] d.h. [mm] f^n \not= [/mm] 0 für alle n [mm] \in \IN. [/mm]
Ein Widerspruch zur Voraussetzung.
Daraus folgt, dass U nicht f-invariant ist.

Stimmt das soweit? Ist der letzte Satz richtig??

Danke im voraus.

        
Bezug
f-invariant: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Do 10.05.2007
Autor: angela.h.b.


> geg: Sei V ein endlichdimensionaler VR, 0 [mm]\not=[/mm] f [mm]\in[/mm]
> End(V) mit [mm]f^n[/mm] = 0 für ein n [mm]\in \IN.[/mm] Sei W der Eigenraum
> zum Eigenvektor 0
>  
> z.z.: Ist V = U [mm]\oplus[/mm] W, so ist U nicht f-invariant.
>  Hallo zusammen,
>  
> ich weiß nicht so recht, ob mein Beweis richtig ist. Könnte
> sich das bitte jemand ansehen:

Hallo,

ich finde Deinen Beweis richtig, manches würde ich ein wenig anders formulieren.

>  
> Beweis:
>  
> Annahme: f(U) [mm]\subseteq[/mm] U

Da V die direkte Summe von U und W ist, also insbes. [mm] U\not=0, [/mm] gibt es ein

>  Wähle ein x [mm]\in[/mm] U mit x [mm]\not=[/mm] 0. Ein solches x existiert,
> da U [mm]\oplus[/mm] W = V, aber V [mm]\not=[/mm] W.

>  Dann gilt f(x) [mm]\in[/mm] U und f(x) [mm]\not=[/mm] 0, da sonst x [mm]\in[/mm] W  
> wäre.

(denn die Summe ist direkt)

>  Induktiv folgt nun [mm]f^n(x) \in[/mm] U und [mm]f^n(x)\not=[/mm] 0 für
> alle n [mm]\in \IN,[/mm] d.h. [mm]f^n \not=[/mm] 0 für alle n [mm]\in \IN.[/mm],

(Diese Induktion würde ich sicherheitshalber ausführen.)

>  Ein

im

> Widerspruch zur Voraussetzung.

Also kann U nicht f-invariant sein.

>  Daraus folgt, dass U nicht f-invariant ist.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]