www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - endliche summen
endliche summen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endliche summen: aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:17 Fr 29.09.2006
Autor: LooZander

Aufgabe
rechne mit endlichen summen:
[mm] \summe_{k=1}^{n} 2^{k} [/mm] - [mm] \summe_{k=1}^{n-2} 2^{k+1} [/mm]

hallo.....hab schon alles versucht, komme aber nicht auf sad richtige ergebnis!!

richtiges ergebnis soll sein: [mm] 2^{n}-1 [/mm]


mein ansatz:
[mm] \summe_{k=1}^{n} 2^{k} [/mm] - [mm] \summe_{k=1}^{n-2} 2^{k+1} [/mm] = [mm] \summe_{k=0}^{n-1} 2^{k+1} [/mm] - [mm] \summe_{k=0}^{n-1} 2^{k} [/mm]
wegen indexverschiebung

jetzt kann ich die geometrische summenformel anwenden: [mm] \summe_{i=0}^{n}a^{i} [/mm] = [mm] \bruch{(1-a^{n})}{(1-a)} [/mm]

also: [mm] \bruch{1-2^{n}}{1-2}-\bruch{1-2^{n-1}}{1-2}=2^{n}-1-\bruch{2^{n}}{2}+1=\bruch{1}{2}2^{n} [/mm]

das ist aber nicht das richtige ergebnis!
könnt ihr mir bite helfen

danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
endliche summen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 15:30 Fr 29.09.2006
Autor: M.Rex

Hallo

> rechne mit endlichen summen:
>  [mm]\summe_{k=1}^{n} 2^{k}[/mm] - [mm]\summe_{k=1}^{n-2} 2^{k+1}[/mm]
>  
> hallo.....hab schon alles versucht, komme aber nicht auf
> sad richtige ergebnis!!
>  
> richtiges ergebnis soll sein: [mm]2^{n}-1[/mm]
>  
>
> mein ansatz:
>  [mm]\summe_{k=1}^{n} 2^{k}[/mm] - [mm]\summe_{k=1}^{n-2} 2^{k+1}[/mm] =
> [mm]\summe_{k=0}^{n-1} 2^{k+1}[/mm] - [mm]\summe_{k=0}^{n-1} 2^{k}[/mm]
>  
> wegen indexverschiebung

Korrekt.

jetzt kannst du die Summen in einer Summe schreiben.

[mm] \summe_{k=0}^{n-1} 2^{k+1} -\summe_{k=0}^{n-1} 2^{k} [/mm]
[mm] =\summe_{k=0}^{n-1} 2^{k+1} [/mm] - [mm] 2^{k} [/mm]

Entweder sieht man jetzt schon, dass alles ausser [mm] 2^{n} [/mm] und -1 "heraussubtrahiert" wird.
Sonst
[mm] \summe_{k=0}^{n-1} 2^{k+1} [/mm] - [mm] 2^{k} [/mm]
[mm] =\red{2^{1}}-\green{2^{0}}+\red{2²}\red{-2^{1}}+2³\red{-2²}+\ldots+\red{2^{n-1}}-2^{n-1-1}+\green{2^{n-1+1}}\red{-2^{n-1}}. [/mm]


Es bleiben jetzt nur noch die grünen Terme [mm] \underbrace{2^{n+1+1}}_{=2^{n}}-\underbrace{2^{0}}_{=1} [/mm] übrig.

Marius

Bezug
                
Bezug
endliche summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:41 Sa 30.09.2006
Autor: ullim


> Hallo
>  
> > rechne mit endlichen summen:
>  >  [mm]\summe_{k=1}^{n} 2^{k}[/mm] - [mm]\summe_{k=1}^{n-2} 2^{k+1}[/mm]
>  >  
> > hallo.....hab schon alles versucht, komme aber nicht auf
> > sad richtige ergebnis!!
>  >  
> > richtiges ergebnis soll sein: [mm]2^{n}-1[/mm]
>  >  
> >
> > mein ansatz:
>  >  [mm]\summe_{k=1}^{n} 2^{k}[/mm] - [mm]\summe_{k=1}^{n-2} 2^{k+1}[/mm] =
> > [mm]\summe_{k=0}^{n-1} 2^{k+1}[/mm] - [mm]\summe_{k=0}^{n-1} 2^{k}[/mm]
>  >  
> > wegen indexverschiebung
>  
> Korrekt.
>  

Die letzte Summe ist nicht richtig, sondern [mm] \summe_{k=2}^{n-1} 2^{k} [/mm] währe richtig. Daraus sieht man auch sofort, das die ersten beiden Terme der ersten Summe übrigbleiben, also [mm] 2+2^n. [/mm]

> jetzt kannst du die Summen in einer Summe schreiben.
>  
> [mm]\summe_{k=0}^{n-1} 2^{k+1} -\summe_{k=0}^{n-1} 2^{k}[/mm]
>  
> [mm]=\summe_{k=0}^{n-1} 2^{k+1}[/mm] - [mm]2^{k}[/mm]
>  
> Entweder sieht man jetzt schon, dass alles ausser [mm]2^{n}[/mm] und
> -1 "heraussubtrahiert" wird.
>  Sonst
>  [mm]\summe_{k=0}^{n-1} 2^{k+1}[/mm] - [mm]2^{k}[/mm]
>  
> [mm]=\red{2^{1}}-\green{2^{0}}+\red{2²}\red{-2^{1}}+2³\red{-2²}+\ldots+\red{2^{n-1}}-2^{n-1-1}+\green{2^{n-1+1}}\red{-2^{n-1}}.[/mm]
>  
>
> Es bleiben jetzt nur noch die grünen Terme
> [mm]\underbrace{2^{n+1+1}}_{=2^{n}}-\underbrace{2^{0}}_{=1}[/mm]
> übrig.
>  
> Marius

Bezug
        
Bezug
endliche summen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Fr 29.09.2006
Autor: Gonozal_IX

Hiho,

im Endeffekt wurde ja im vorigen Post alles schon erklärt (bis auf die letzte Zeile, die eigentlich [mm] 2^{n+1-1} [/mm] - [mm] 2^0 [/mm] heissen müsste ;)

Nun noch zu deinem Fehler:  Die geometrische Summenformel gilt nur für a<1 und da 2 nicht kleiner 1 ist, kannst du die dann leider nicht anwenden.

Gruß,
Gono.

Bezug
                
Bezug
endliche summen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Fr 29.09.2006
Autor: LooZander

aber wieso kann man die geometrische summe nur für a<1 anwenden??
vor allem steht das nirgendwo!!! es steht immer nur für [mm] a\not=1 [/mm]

Bezug
                        
Bezug
endliche summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Fr 29.09.2006
Autor: riwe

soweit ich mich erinnern, kann gilt sie auch für a > 1, nur divergiert sie für n [mm] \to\infty [/mm]

Bezug
                        
Bezug
endliche summen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Fr 29.09.2006
Autor: Sigrid

Hallo,

> aber wieso kann man die geometrische summe nur für a<1
> anwenden??
>  vor allem steht das nirgendwo!!! es steht immer nur für
> [mm]a\not=1[/mm]  

Du kannst sie anwenden. Probleme gibt es nur beim Grenzwert.

Nun noch mal zu deiner Rechnung:

> mein ansatz:
> $ [mm] \summe_{k=1}^{n} 2^{k} [/mm] $ - $ [mm] \summe_{k=1}^{n-2} 2^{k+1} [/mm] > $ = $ [mm] \summe_{k=0}^{n-1} 2^{k+1} [/mm] $ - $ [mm] \summe_{k=0}^{n-1} 2^{k} [/mm] $
> wegen indexverschiebung

Kann es sein, dass du bei der Aufgabenstellung einen Tippfehler hast? Diese Indexverschiebung kann ich nicht ganz nachvollziehen.

jetzt kann ich die geometrische summenformel anwenden: $ [mm] \summe_{i=0}^{n}a^{i} [/mm] $ = $ [mm] \bruch{(1-a^{n})}{(1-a)} [/mm] $


Die Formel ist

$ [mm] \summe_{i=0}^{n}a^{i} [/mm] $ = $ [mm] \bruch{(1-a^{n+1})}{(1-a)} [/mm] $



> also: $ [mm] \bruch{1-2^{n}}{1-2}-\bruch{1-2^{n-1}}{1-2}=2^{n}-1-\bruch{2^{n}}{2}+1=\bruch{1}{2}2^{n} [/mm] $

Hier achtest du auch nicht sorgfältig genug auf die Unterschiede zur Formel.

$ [mm] \summe_{k=0}^{n-1} 2^{k+1} [/mm] $ - $ [mm] \summe_{k=0}^{n-1} 2^{k} [/mm] $

$ = 2 [mm] \cdot \bruch{1-2^{n}}{1-2}-\bruch{1-2^{n}}{1-2}= [/mm] 2 [mm] \cdot (2^{n}-1)-2^{n}+1=2^n [/mm] - 1 $

Gruß
Sigrid



Bezug
        
Bezug
endliche summen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Fr 29.09.2006
Autor: ullim

Hi LooZander,

[mm] \sum_{k=1}^{n} 2^k [/mm] - [mm] \sum_{k=1}^{n-2} 2^{k+1}=2+2^n [/mm]

Also entweder ist in Deiner Aufgabenstrellung ein Fehler oder in Deiner Musterlösung.

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]