www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - endl. Körper, char(K)=p
endl. Körper, char(K)=p < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endl. Körper, char(K)=p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Sa 08.10.2016
Autor: impliziteFunktion

Aufgabe
Es sei $K$ ein endlicher Körper der Charakteristik $p$.

a) Man zeige, dass

[mm] $\sigma: K\to [/mm] K, [mm] x\mapsto x^p$ [/mm]

ein bijektiver Ringhomomorphismus ist.

b) Es sei [mm] $L:=\mathbb{F}_p/(X^p-X-1)$. [/mm] Man zeige, dass $L$ ein Körper ist und bestimme seine Kardinalität.

c) Man zeige, dass [mm] $\sigma^p(\alpha)=\alpha$ [/mm] gilt für alle [mm] $\alpha\in [/mm] L$

Hallo,

ich habe eine Frage zu dieser Aufgabe.

Aufgabenteil a) war einfach.

Zu zeigen ist, dass [mm] $\sigma(a+b)=\sigma(a)+\sigma(b)$ [/mm] und [mm] $\sigma(ab)=\sigma(a)\sigma(b)$. [/mm]

Es ist [mm] $\sigma(a+b)=(a+p)^p=a^p+b^p$, [/mm] da $char(K)=p$.

und [mm] $\sigma(ab)=(ab)^p=a^pb^p=\sigma(a)\sigma(b)$ [/mm]

Um zu zeigen, dass [mm] $\sigma$ [/mm] bijektiv ist, reicht es zu zeigen, dass die Abbildung injektiv ist. Weil $K$ endlich ist, folgt dann bereits die Behauptung.

Der Kern von [mm] $\sigma$ [/mm] ist offensichtlich einelementig mit [mm] $\{0\}$. [/mm]

Zu b):

$L$ ist genau dann ein Körper wenn [mm] $(X^p-X-1)$ [/mm] ein maximales Ideal ist.
Da [mm] $\mathbb{F}_p$ [/mm] ein Körper ist, ist [mm] $\mathbb{F}_p[X]$ [/mm] ein Hauptidealring.
Deshalb ist [mm] $(X^p-X-1)$ [/mm] ein maximales Ideal, denn [mm] $X^p-X-1$ [/mm] ist irreduzibel.

Wie lässt sich die Kardinalität von $L$ bestimmen?


        
Bezug
endl. Körper, char(K)=p: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 So 09.10.2016
Autor: hippias


> Es sei [mm]K[/mm] ein endlicher Körper der Charakteristik [mm]p[/mm].
>  
> a) Man zeige, dass
>
> [mm]\sigma: K\to K, x\mapsto x^p[/mm]
>  
> ein bijektiver Ringhomomorphismus ist.
>  
> b) Es sei [mm]L:=\mathbb{F}_p/(X^p-X-1)[/mm]. Man zeige, dass [mm]L[/mm] ein
> Körper ist und bestimme seine Kardinalität.
>  
> c) Man zeige, dass [mm]\sigma^p(\alpha)=\alpha[/mm] gilt für alle
> [mm]\alpha\in L[/mm]
>  Hallo,
>  
> ich habe eine Frage zu dieser Aufgabe.
>  
> Aufgabenteil a) war einfach.
>  
> Zu zeigen ist, dass [mm]\sigma(a+b)=\sigma(a)+\sigma(b)[/mm] und
> [mm]\sigma(ab)=\sigma(a)\sigma(b)[/mm].
>  
> Es ist [mm]\sigma(a+b)=(a+p)^p=a^p+b^p[/mm], da [mm]char(K)=p[/mm].
>  
> und [mm]\sigma(ab)=(ab)^p=a^pb^p=\sigma(a)\sigma(b)[/mm]
>  
> Um zu zeigen, dass [mm]\sigma[/mm] bijektiv ist, reicht es zu
> zeigen, dass die Abbildung injektiv ist. Weil [mm]K[/mm] endlich
> ist, folgt dann bereits die Behauptung.
>  
> Der Kern von [mm]\sigma[/mm] ist offensichtlich einelementig mit
> [mm]\{0\}[/mm].

In Ordnung.

>  
> Zu b):
>  
> [mm]L[/mm] ist genau dann ein Körper wenn [mm](X^p-X-1)[/mm] ein maximales
> Ideal ist.
>  Da [mm]\mathbb{F}_p[/mm] ein Körper ist, ist [mm]\mathbb{F}_p[X][/mm] ein
> Hauptidealring.
>  Deshalb ist [mm](X^p-X-1)[/mm] ein maximales Ideal, denn [mm]X^p-X-1[/mm]
> ist irreduzibel.
>  
> Wie lässt sich die Kardinalität von [mm]L[/mm] bestimmen?

Über [mm] $\dim_{\IF_{p}}(L)$... [/mm]

>  


Bezug
                
Bezug
endl. Körper, char(K)=p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 So 09.10.2016
Autor: impliziteFunktion

[mm] $dim_{\mathbb{F}_p}(L)=dim_{\mathbb{F}_p}(\mathbb{F}_p[X]/(X^p-X-1))=dim_{\mathbb{F}_p}(\mathbb{F}_p[X])-dim_{\mathbb{F}_p}((X^p-X-1))$ [/mm]

Wenn man die Dimensionsformeln benutzt.
Und wie kann man die jeweiligen Dimensionen bestimmen?

Bezug
                        
Bezug
endl. Körper, char(K)=p: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 So 09.10.2016
Autor: felixf

Moin!

> [mm]dim_{\mathbb{F}_p}(L)=dim_{\mathbb{F}_p}(\mathbb{F}_p[X]/(X^p-X-1))=dim_{\mathbb{F}_p}(\mathbb{F}_p[X])-dim_{\mathbb{F}_p}((X^p-X-1))[/mm]
>  
> Wenn man die Dimensionsformeln benutzt.
>  Und wie kann man die jeweiligen Dimensionen bestimmen?

Auf der rechten Seite hast du zweimal [mm] $\infty$ [/mm] stehen. So kommst du also nicht weiter.

Man kann aber ganz allgemein sehr einfach [mm] $\dim_K [/mm] K[X]/(f)$ ausrechnen für $f [mm] \in [/mm] K[X]$, wenn $K$ ein Körper ist. Habt ihr sicher schonmal gehabt. Hat etwas mit [mm] $\deg [/mm] f$ zu tun.

LG Felix


Bezug
                                
Bezug
endl. Körper, char(K)=p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 So 09.10.2016
Autor: impliziteFunktion

Ich bin nochmal das Skript durchgegangen, aber nicht fündig geworden.
Welchen Satz meinst du?

Bezug
                                        
Bezug
endl. Körper, char(K)=p: Antwort
Status: (Antwort) fertig Status 
Datum: 03:41 Di 11.10.2016
Autor: tobit09

Hallo impliziteFunktion!


> Ich bin nochmal das Skript durchgegangen, aber nicht
> fündig geworden.
>  Welchen Satz meinst du?

Vermutlich meint Felix folgenden Satz:

Sei $K$ ein Körper und [mm] $0\not=f\in [/mm] K[X]$. Dann gilt [mm] $\operatorname{dim}_K(K[X]/(f))=\operatorname{deg}(f)$. [/mm]


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]