elliptische DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:07 Di 26.04.2011 | Autor: | aly19 |
Aufgabe | a [mm] \partial_{xx}u+b\partial_{yy}u+2c \partial_{xy}u=0 [/mm] mit a, b [mm] \in \IR^+, [/mm] c [mm] \in \IR, ab>c^2. [/mm] Finden Sie Bedinungen an Matrizen O [mm] \in \IR^{2 \times 2 }, [/mm] sodass v(x)=u(Ox) wieder a [mm] \partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0 [/mm] erfüllt. |
Hey, kann mir bei der Aufgabe jemand helfen?
Ich hab schon folgendes berechnet:
[mm] z=Ox=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } \vektor{x \\y}=\vektor{ a_{11}x+a_{12}y \\ a_{21} x+a_{22}y }
[/mm]
[mm] \bruch{\partial v}{\partial x}= \bruch{\partial u}{\partial z_1} a_{11}+\bruch{\partial u}{\partial z_2} a_{21}
[/mm]
ebenso:
[mm] \bruch{\partial v}{\partial y}=\bruch{\partial u}{\partial z_1}a_{12}+ \bruch{\partial u}{\partial z_2}a_{22}
[/mm]
Dann:
[mm] \bruch{\partial^2 v}{\partial x^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{11}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{21}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{21} a_{12} [/mm]
und
[mm] \bruch{\partial^2 v}{\partial y^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{22}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{12}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{22} [/mm]
und
[mm] \bruch{\partial^2 v}{\partial x y}= \bruch{\partial^2 u}{\partial z_1^2} a_{11} a_{12}+\bruch{\partial^2 u}{\partial z_2^2} a_{21} a_{22}+\bruch{\partial^2 u}{\partial z_1 z_2} a_{22} a_{11}+\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{21}
[/mm]
stimmt das soweit?
jetzt kann ich das ja in a [mm] \partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0 [/mm] einsetzen, aber dann komm ich nicht weiter. wenn ich das das dann so umschreibe, dass ich nach den Ableitungen sortiere, dann müssen die Koeffizienten ja wieder a, b 2c ergeben, damit das Null wird oder? Dann hab ich aber ja 3 Gleichungen und 4 Unbekannte aus der Matrix. Hab da bisschen mit rumprobiert, komme aber nicht weiter. Vielleicht kann mir ja jemand helfen?
viele grüße
|
|
|
|
Hallo aly19,
> a [mm]\partial_{xx}u+b\partial_{yy}u+2c \partial_{xy}u=0[/mm] mit a,
> b [mm]\in \IR^+,[/mm] c [mm]\in \IR, ab>c^2.[/mm] Finden Sie Bedinungen an
> Matrizen O [mm]\in \IR^{2 \times 2 },[/mm] sodass v(x)=u(Ox) wieder
> a [mm]\partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0[/mm]
> erfüllt.
> Hey, kann mir bei der Aufgabe jemand helfen?
> Ich hab schon folgendes berechnet:
> [mm]z=Ox=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } \vektor{x \\y}=\vektor{ a_{11}x+a_{12}y \\ a_{21} x+a_{22}y }[/mm]
>
> [mm]\bruch{\partial v}{\partial x}= \bruch{\partial u}{\partial z_1} a_{11}+\bruch{\partial u}{\partial z_2} a_{21}[/mm]
>
> ebenso:
> [mm]\bruch{\partial v}{\partial y}=\bruch{\partial u}{\partial z_1}a_{12}+ \bruch{\partial u}{\partial z_2}a_{22}[/mm]
>
> Dann:
> [mm]\bruch{\partial^2 v}{\partial x^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{11}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{21}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{21} a_{12}[/mm]
> und
> [mm]\bruch{\partial^2 v}{\partial y^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{22}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{12}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{22}[/mm]
Hier hast Du einen Zahlendreher drin:
[mm]\bruch{\partial^2 v}{\partial y^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{\blue{1}2}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{\blue{2}2}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{22}[/mm]
> und
> [mm]\bruch{\partial^2 v}{\partial x y}= \bruch{\partial^2 u}{\partial z_1^2} a_{11} a_{12}+\bruch{\partial^2 u}{\partial z_2^2} a_{21} a_{22}+\bruch{\partial^2 u}{\partial z_1 z_2} a_{22} a_{11}+\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{21}[/mm]
>
> stimmt das soweit?
Abgesehen von dem Zahlendreher stimmt das.
> jetzt kann ich das ja in a [mm]\partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0[/mm]
> einsetzen, aber dann komm ich nicht weiter. wenn ich das
> das dann so umschreibe, dass ich nach den Ableitungen
> sortiere, dann müssen die Koeffizienten ja wieder a, b 2c
> ergeben, damit das Null wird oder? Dann hab ich aber ja 3
> Gleichungen und 4 Unbekannte aus der Matrix. Hab da
> bisschen mit rumprobiert, komme aber nicht weiter.
> Vielleicht kann mir ja jemand helfen?
> viele grüße
>
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:50 Mi 27.04.2011 | Autor: | aly19 |
Hey danke für deine Antwort, das hatte ich falsch abgetippt von meinem Zettel. Weißt du denn jetzt wie es weiter geht? Also wie ich jetzt auf die Bedingungen komme?
Wäre super, wenn mir da noch jemand helfen könnte.
liebe grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:53 Do 28.04.2011 | Autor: | meili |
Hallo aly,
> jetzt kann ich das ja in $a [mm] \partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0$ [/mm]
> einsetzen, aber dann komm ich nicht weiter. wenn ich
> das das dann so umschreibe, dass ich nach den Ableitungen sortiere,
> dann müssen die Koeffizienten ja wieder a, b 2c ergeben, damit das Null
> wird oder? Dann hab ich aber ja 3 Gleichungen und 4 Unbekannte aus
> der Matrix.
Es sind nur Bedingungen für die Matrix (ihre Elemente) gesucht.
Es muss nicht nur eine Matrix (feste Zahlenwerte für alle 4 Elemente der Matrix) geben.
Vielleicht kann man einen Wert frei, oder unter Einschränkungen, wählen.
> Hab da bisschen mit rumprobiert, komme aber nicht weiter. Vielleicht
> kann mir ja jemand helfen?
Vielleicht zeigst Du etwas von Deinen Versuchen, und jemand kann sie dann korrigieren.
Gruß
meili
|
|
|
|