www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - elliptische DGL
elliptische DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

elliptische DGL: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 22:07 Di 26.04.2011
Autor: aly19

Aufgabe
a [mm] \partial_{xx}u+b\partial_{yy}u+2c \partial_{xy}u=0 [/mm] mit a, b [mm] \in \IR^+, [/mm] c [mm] \in \IR, ab>c^2. [/mm] Finden Sie Bedinungen an Matrizen O [mm] \in \IR^{2 \times 2 }, [/mm] sodass v(x)=u(Ox) wieder a [mm] \partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0 [/mm] erfüllt.

Hey, kann mir bei der Aufgabe jemand helfen?
Ich hab schon folgendes berechnet:
[mm] z=Ox=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } \vektor{x \\y}=\vektor{ a_{11}x+a_{12}y \\ a_{21} x+a_{22}y } [/mm]
[mm] \bruch{\partial v}{\partial x}= \bruch{\partial u}{\partial z_1} a_{11}+\bruch{\partial u}{\partial z_2} a_{21} [/mm]

ebenso:
[mm] \bruch{\partial v}{\partial y}=\bruch{\partial u}{\partial z_1}a_{12}+ \bruch{\partial u}{\partial z_2}a_{22} [/mm]
Dann:
[mm] \bruch{\partial^2 v}{\partial x^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{11}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{21}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{21} a_{12} [/mm]
und
[mm] \bruch{\partial^2 v}{\partial y^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{22}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{12}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{22} [/mm]
und
[mm] \bruch{\partial^2 v}{\partial x y}= \bruch{\partial^2 u}{\partial z_1^2} a_{11} a_{12}+\bruch{\partial^2 u}{\partial z_2^2} a_{21} a_{22}+\bruch{\partial^2 u}{\partial z_1 z_2} a_{22} a_{11}+\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{21} [/mm]

stimmt das soweit?
jetzt kann ich das ja in  a [mm] \partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0 [/mm] einsetzen, aber dann komm ich nicht weiter. wenn ich das das dann so umschreibe, dass ich nach den Ableitungen sortiere, dann müssen die Koeffizienten ja wieder a, b 2c ergeben, damit das Null wird oder? Dann hab ich aber ja 3 Gleichungen und 4 Unbekannte aus der Matrix. Hab da  bisschen mit rumprobiert, komme aber nicht weiter. Vielleicht kann mir ja jemand helfen?
viele grüße


        
Bezug
elliptische DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 00:21 Mi 27.04.2011
Autor: MathePower

Hallo aly19,

> a [mm]\partial_{xx}u+b\partial_{yy}u+2c \partial_{xy}u=0[/mm] mit a,
> b [mm]\in \IR^+,[/mm] c [mm]\in \IR, ab>c^2.[/mm] Finden Sie Bedinungen an
> Matrizen O [mm]\in \IR^{2 \times 2 },[/mm] sodass v(x)=u(Ox) wieder
> a [mm]\partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0[/mm]
> erfüllt.
>  Hey, kann mir bei der Aufgabe jemand helfen?
>  Ich hab schon folgendes berechnet:
> [mm]z=Ox=\pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } \vektor{x \\y}=\vektor{ a_{11}x+a_{12}y \\ a_{21} x+a_{22}y }[/mm]
>  
> [mm]\bruch{\partial v}{\partial x}= \bruch{\partial u}{\partial z_1} a_{11}+\bruch{\partial u}{\partial z_2} a_{21}[/mm]
>  
> ebenso:
> [mm]\bruch{\partial v}{\partial y}=\bruch{\partial u}{\partial z_1}a_{12}+ \bruch{\partial u}{\partial z_2}a_{22}[/mm]
>  
> Dann:
> [mm]\bruch{\partial^2 v}{\partial x^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{11}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{21}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{21} a_{12}[/mm]
> und
>  [mm]\bruch{\partial^2 v}{\partial y^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{22}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{12}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{22}[/mm]


Hier hast Du einen Zahlendreher drin:

[mm]\bruch{\partial^2 v}{\partial y^2}= \bruch{\partial^2 u}{\partial z_1^2} a_{\blue{1}2}^2+\bruch{\partial^2 u}{\partial z_2^2} a_{\blue{2}2}^2+2\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{22}[/mm]


> und
>  [mm]\bruch{\partial^2 v}{\partial x y}= \bruch{\partial^2 u}{\partial z_1^2} a_{11} a_{12}+\bruch{\partial^2 u}{\partial z_2^2} a_{21} a_{22}+\bruch{\partial^2 u}{\partial z_1 z_2} a_{22} a_{11}+\bruch{\partial^2 u}{\partial z_1 z_2} a_{12} a_{21}[/mm]
>  
> stimmt das soweit?


Abgesehen von dem Zahlendreher stimmt das. [ok]


> jetzt kann ich das ja in  a [mm]\partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0[/mm]
> einsetzen, aber dann komm ich nicht weiter. wenn ich das
> das dann so umschreibe, dass ich nach den Ableitungen
> sortiere, dann müssen die Koeffizienten ja wieder a, b 2c
> ergeben, damit das Null wird oder? Dann hab ich aber ja 3
> Gleichungen und 4 Unbekannte aus der Matrix. Hab da  
> bisschen mit rumprobiert, komme aber nicht weiter.
> Vielleicht kann mir ja jemand helfen?
>  viele grüße

>


Gruss
MathePower  

Bezug
                
Bezug
elliptische DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 Mi 27.04.2011
Autor: aly19

Hey danke für deine Antwort, das hatte ich falsch abgetippt von meinem Zettel. Weißt du denn jetzt wie es weiter geht? Also wie ich jetzt auf die Bedingungen komme?
Wäre super, wenn mir da noch jemand helfen könnte.
liebe grüße

Bezug
                        
Bezug
elliptische DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Do 28.04.2011
Autor: meili

Hallo aly,

> jetzt kann ich das ja in  $a [mm] \partial_{xx}v+b \partial_{yy}v+2c \partial_{xy}v=0$ [/mm]
> einsetzen, aber dann komm ich nicht weiter. wenn ich
>  das das dann so umschreibe, dass ich nach den Ableitungen sortiere,
> dann müssen die Koeffizienten ja wieder a, b 2c ergeben, damit das Null
> wird oder? Dann hab ich aber ja 3 Gleichungen und 4 Unbekannte aus
> der  Matrix.

[ok]

Es sind nur Bedingungen für die Matrix (ihre Elemente) gesucht.
Es muss nicht nur eine Matrix (feste Zahlenwerte für alle 4 Elemente der Matrix) geben.
Vielleicht kann man einen Wert frei, oder unter Einschränkungen, wählen.

> Hab da  bisschen mit rumprobiert, komme aber nicht weiter. Vielleicht
> kann  mir ja jemand helfen?

Vielleicht zeigst Du etwas von Deinen Versuchen, und jemand kann sie dann korrigieren.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]