www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - eingekleidete Extremwertaufgab
eingekleidete Extremwertaufgab < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eingekleidete Extremwertaufgab: Tipp wie ich vorgehen muss
Status: (Frage) beantwortet Status 
Datum: 18:32 Sa 09.09.2006
Autor: nixchegga

Aufgabe
Eine 400-m-Laufbahn in einem Stadion besteht aus zwei parallelen Strecken und zwei angesetzten Halbkreisen. Für welchen Radius x der Halbreise wird die Rechteckige Spielfläche maximal?  

Ich weiß irgendwie gar nicht wie ich da vorgehen muss.
Also die Zielfunktion habe ich als A=2*x*y (für Flächenihnalt des Rechtecks) bestimmt.
Bei der Nebenbedingung bin ich mir nicht sicher. D haba ich U=400m=2*y+2*x
Kann mir da jemand weiter helfen? Mir sgaen wie ich nun weiter rehcnen muss und ob mein Ansatz überhaupt richtig ist?

Danke schon mal im vorraus^^

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
eingekleidete Extremwertaufgab: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Sa 09.09.2006
Autor: Christian

Hallo.

> Eine 400-m-Laufbahn in einem Stadion besteht aus zwei
> parallelen Strecken und zwei angesetzten Halbkreisen. Für
> welchen Radius x der Halbreise wird die Rechteckige
> Spielfläche maximal?
> Ich weiß irgendwie gar nicht wie ich da vorgehen muss.
>  Also die Zielfunktion habe ich als A=2*x*y (für
> Flächenihnalt des Rechtecks) bestimmt.
> Bei der Nebenbedingung bin ich mir nicht sicher. D haba ich
> U=400m=2*y+2*x

[notok] Das stimmt so noch nicht. Das ist der Umfang des Rechtecks.
400 m soll aber die Länge der Laufbahn sein...

>  Kann mir da jemand weiter helfen? Mir sgaen wie ich nun
> weiter rehcnen muss und ob mein Ansatz überhaupt richtig
> ist?
>  
> Danke schon mal im vorraus^^
>  

Dieselbe Aufgabe wurde hier schon einmal gestellt und gelöst.

Gruß,
Christian

Bezug
                
Bezug
eingekleidete Extremwertaufgab: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:24 So 10.09.2006
Autor: nixchegga

Habe mir das Beispiel angeschaut, aber vertseh das trotzdem nicht. Ich muss bei meiner Aufgabe einen Radius ausrechnen, für den das Rechteck maximal wird. Kann aus der anderen Aufgabe nicht entnehmen, wie ich das machen soll. Kann mir da jemand helfen?

Und wie kann ich den Umfang der Laufbahn berechnen?

Bezug
                        
Bezug
eingekleidete Extremwertaufgab: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 So 10.09.2006
Autor: Zwerglein

Hi, nixchegga,

wie Christian schon geschrieben hat, geht die 400m-Laufbahn doch auch über die Halbkreise! D.h. Der Läufer muss die beiden Längen y (insgesamt also 2y) und die beiden Halbkreise (rechnerisch ergibt dies einen ganzen Kreis) mit Radius x durchlaufen.
Daher: 2*y + [mm] 2\pi*x [/mm] = 400

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]