www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - e-Fkt hoch ln-Fkt.
e-Fkt hoch ln-Fkt. < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Fkt hoch ln-Fkt.: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:02 Mo 11.01.2010
Autor: pueppiii

Aufgabe
zu zeigen: S = -k [mm] \summe_{i=1}^{W} p_{i} [/mm] ln [mm] p_{i} [/mm] soll gleich sein mit
                  [mm] S_{q} [/mm] = k [mm] \bruch{1-\summe_{i=1}^{W} p_{i}^{q}}{q-1} [/mm]

Hallo,

ich habe grad eine kleine Verständnislücke bzw. stehe wohl grad voll auf dem SChlauch!!

[mm] S_{1}\equiv \limes_{q\rightarrow\1}S_{q} [/mm] = k [mm] \limes_{q\rightarrow\1}\bruch{1-\summe_{i=1}^{W} p_{i} exp[(q-1)lnp_{i}]}{q-1} [/mm] soll gleich -k [mm] \summe_{i=1}^{W} p_{i} [/mm] ln [mm] p_{i} [/mm] sein, aber das verstehe ich irgendwie nicht

D.h. heisst übrigens q gegen 1!

Wie löse ich exp[(q-1)lnp]?
Ich weiß dass [mm] e^{ln p} [/mm] = p ist, aber was mache ich dann mit dem (q-1)? Bleibt das als Faktor stehen??

Danke für eure Hilfe!!


        
Bezug
e-Fkt hoch ln-Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Mo 11.01.2010
Autor: Teufel

Hi!

[mm] e^{(q-1)*ln(p)}=(e^{ln(p)})^{q-1}=p^{q-1} [/mm]

[anon] Teufel

Bezug
                
Bezug
e-Fkt hoch ln-Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Mo 11.01.2010
Autor: pueppiii

Ok, danke dir Teufel, aber wie zeige ich den Grenzfall!!

Ich kann ja Regel von L´Hospital anwenden, da Zähler und Nenner 0 sind, dann muss ich beide differnzieren, das habe ich getan, aber irgendwie komme ich dann nicht auf - k [mm] \summe_{i=1}^{W}p_{i} lnp_{i} [/mm]


Noch wichtig zu wissen, dass [mm] \summe_{i=1}^{W}p_{i}= [/mm] 1 ist!

Bezug
                        
Bezug
e-Fkt hoch ln-Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Di 12.01.2010
Autor: Teufel

Hi nochmal!

Also du hast:

[mm] S_q=k*\bruch{1-\summe_{i=1}^{W}p_i^q}{q-1}. [/mm]

[mm] \limes_{q\rightarrow 1}(k*\bruch{1-\summe_{i=1}^{W}p_i^q}{q-1})="\bruch{0}{0}" [/mm] (da für q [mm] \to [/mm] 1 die Summe gegen [mm] \summe_{i=1}^{W}p_i=1 [/mm] geht), daher kannst du den L'Hospital anwenden.

Also ist der Limes gleich [mm] \limes_{q\rightarrow 1}(k*\bruch{-\summe_{i=1}^{W}p_i^q*ln(p_i)}{1})=-k*\summe_{i=1}^{W}p_i*ln(p_i)=S. [/mm]

Alles klar?

Denn [mm] (p_i^q)'=p_i^q*ln(p_i) [/mm] und für wenn q gegen 1 geht bleibt nur [mm] p_i*ln(p_i) [/mm] übrig.

[anon] Teufel

Bezug
                                
Bezug
e-Fkt hoch ln-Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Fr 15.01.2010
Autor: pueppiii

Ja dankeschön für deine Hilfe, hatte es so ähnlich rausbekommen!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]