www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - darstellende Matrix
darstellende Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

darstellende Matrix: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:31 Sa 01.05.2010
Autor: richardducat

Aufgabe
Betrachten Sie den 4-dim. Vektorraum über [mm] \IC, [/mm] der von den Funktionen sin,cos,sinh,cosh aufgespannt wird. Stellen Sie die darstellende Matrix der lin. Abb. [mm] H:f\mapsto [/mm] f'+f'' bezüglich der duch (sin,cos,sinh,cosh) gegebenen Basis auf und bestimmen Sie die Eigenwerte und Eigenräume von H.

hallo,

ich möchte gerne wissen, ob ich die darstellende Matrix korrekt bestimmt habe.

Zuerst habe ich die Bilder der Basisvektoren ermittelt:

[mm] H(v_1)=H(sin)=sin'+sin''=cos-sin [/mm]
[mm] H(v_2)=-sin-cos [/mm]
[mm] H(v_3)=cosh-sinh [/mm]
[mm] H(v_4)=-sinh-cosh [/mm]

Dann habe ich die Bildvektoren als Linearkombination der Basiselemente dargestellt:

[mm] H(v_1)=\summe_{i=1}^{4}b_{i1}v_i=b_{11}sin+b_{21}cos+b_{31}sinh+b_{41}cosh=-1*sin+1*cos+0*sinh*0*cosh [/mm]
[mm] H(v_2)=\summe_{i=1}^{4}b_{i2}v_i=b_{12}sin+b_{22}cos+b_{32}sinh+b_{42}cosh=-1*sin+-1*cos+0*sinh+0*cosh [/mm]
[mm] H(v_3)=\summe_{i=1}^{4}b_{i3}v_i=b_{13}sin+b_{23}cos+b_{33}sinh+b_{43}cosh=0*sin+0*cos+1*sinh+-1*cosh [/mm]
[mm] H(v_4)=\summe_{i=1}^{4}b_{i4}v_i=b_{14}sin+b_{24}cos+b_{34}sinh+b_{44}cosh=0*sin+0*cos+-1*sinh+-1*cosh [/mm]

dann trage ich die Koeffizienten in die Matrix ein:

[mm] A:=\pmat{ -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\0 & 0 & 1 & -1 \\0 & 0 & 1 & -1} [/mm]

danke fürs draufschauen

richard

        
Bezug
darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Sa 01.05.2010
Autor: Teufel

Hi!

Stimmt schon fast, Aber schaue nochmal, was die Ableitungen von sinh(x) und cosh(x) sind!

Und das andere, was noch nicht stimmt:
Wenn du H(sin(x))=-1*sin(x)+1*cos(x)+0*sinh(x)+0*cosh(x) raus hast, dann musst du -1, 1, 0 0 als 1. Spalte der Matrix eintragen, nicht als Zeile!

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]