www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - beweise folgende Identitäten
beweise folgende Identitäten < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweise folgende Identitäten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Mo 15.11.2010
Autor: thunder90

Aufgabe
Man beweise folgende Identitäten!
(a) [mm] cosh^{2} [/mm] x - [mm] sinh^{2} [/mm] x = 1
(b) artanh x [mm] =\bruch{1}{2} [/mm] ln [mm] \bruch{1 + x}{1 - x} [/mm] , (|x| < 1)

Hallo
Ich habe a schon gelöst, aber ich bekomme b nicht hin kann mir einer helfen?
mfg

        
Bezug
beweise folgende Identitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Mo 15.11.2010
Autor: reverend

Hallo thunder,

was dürft Ihr denn zum "beweisen" benutzen? Mir sieht es ja mehr nach einer Rechenaufgabe unter Anwendung der hyperbolischen Funktionen aus.

Wende mal den tanh auf beide Seiten der Gleichung an.

Dann steht links nur noch ein x und rechts ein üppiger Bruch mit großem Bahnhof an Exponentialfunktionen. Aber eigentlich wird dann eben auch nur noch gerechnet, bis sich alles auf ein x reduziert, so wie links.
Probiers mal.

Grüße
reverend


Bezug
        
Bezug
beweise folgende Identitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Mo 15.11.2010
Autor: schachuzipus

Hallo,

> Man beweise folgende Identitäten!
> (a) [mm]cosh^{2}[/mm] x - [mm]sinh^{2}[/mm] x = 1
> (b) artanh x [mm]=\bruch{1}{2}[/mm] ln [mm]\bruch{1 + x}{1 - x}[/mm] , (|x|
> < 1)
> Hallo
> Ich habe a schon gelöst, aber ich bekomme b nicht hin
> kann mir einer helfen?

[mm]\operarotname{artanh}(x)[/mm] ist die Umkehrfunktion von [mm]\tanh(x)[/mm]

Und [mm]\tanh(x)=\frac{\sinh(x)}{\cosh(x)}[/mm]

Benutze die Definition von [mm]\sinh[/mm] und [mm]\cosh[/mm] und du siehst schnell, dass man [mm]\tanh(x)[/mm] schreiben kann als [mm]\tanh(x)=1-\frac{2}{e^{2x}+1}[/mm]

Um die Umkehrfunktion davon zu berechnen, löse [mm]1-\frac{2}{e^{2x}+1}=y[/mm] nach [mm]x[/mm] auf und vertausche anschließend [mm]x[/mm] und [mm]y[/mm]

Gruß

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]