www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - bestimme harmonische Funktion
bestimme harmonische Funktion < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimme harmonische Funktion: Idee
Status: (Frage) überfällig Status 
Datum: 22:22 Di 24.10.2017
Autor: Noya

Aufgabe
Bestimme alle harmonischen Funktionen u : [mm] \IR^2 \to \IR, [/mm] die für alle x [mm] \in \IR^2 [/mm] und alle [mm] \lambda\ge [/mm] 0 [mm] u(\lambda x)=\lambda^2u(x) [/mm] und u(1,0)=1 erfüllen.




Hallo ihr Lieben,

ich bräuchte mal wieder eure Hilfe

damit eine Fkt harmonisch ist, muss u [mm] \in \C^2(\Omega) [/mm] sein und [mm] \Delta u(x)=\sum_{i=1}^{n}u_{x_i,x_i}=0 [/mm] für alle x [mm] \in \Omega. [/mm]


wenn ich mir jetzt meine Funktion angucke:
x [mm] \in \IR^2, [/mm] also betrachte ich x=(x,y)
also etwas wie
[mm] u(\lambda x)=u(\lambda(x,y))=\lambda^2 u(x,y)=\lambda^2 [/mm] u(x)

gucke ich mir jetzt die partiellen Ableitungen an
[mm] u_x=\lambda u_x(\lambda(x,y)) [/mm]
[mm] u_{xx}=\lambda^2u_{xx}(x,y) [/mm]
(für y anlaog)
und damit u harmonisch ist, muss gelten

[mm] \lambda^2(u_{xx}(\lambda(x,y))+u_{yy}(\lambda(x,y)))=0 [/mm] oder?

Zur Vereinfachung jetzt [mm] \lambda=a [/mm]
U(a(x,y)) = [mm] (ax)^2 [/mm] - [mm] (ay)^2 [/mm] = [mm] a^2 (x^2-y^2) [/mm] = [mm] a^2 [/mm] u(x,y) so eine oder? Die würde auch u(1,0)=1 erfüllen. Aber wie finde ich alle?


wie geht man da jetzt am besten weiter vor?
Vielen Dank und schönen Abend noch :)

        
Bezug
bestimme harmonische Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Do 26.10.2017
Autor: blablablabla12345

Wie wärs mit raten? Irgendeine Funktion wirst du ja wohl kennen...

Bezug
        
Bezug
bestimme harmonische Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Do 26.10.2017
Autor: Al-Chwarizmi

x $ [mm] \in \IR^2, [/mm] $ also betrachte ich x=(x,y)
also etwas wie
$ [mm] u(\lambda x)=u(\lambda(x,y))=\lambda^2 u(x,y)=\lambda^2 [/mm] $ u(x)

Ich würde mal sagen, dass das eine wenigstens ziemlich
unglückliche Bezeichnungsweise ist.

Soll die erste Komponente des Vektors x wirklich mit dem
Vektor selbst übereinstimmen ?


LG ,   Al-Chw.

Bezug
        
Bezug
bestimme harmonische Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 26.10.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]