beschränktheit, offenheit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 11:26 Fr 01.05.2009 | Autor: | Becky27 |
Aufgabe | Untersuchen Sie die folgenden Teilmengen des [mm] \IR^{2} [/mm] auf Beschränktheit, Offenheit, Abgeschlossenheit.
a) [mm] M_{1} [/mm] = {(x,y) [mm] \in \IR^{2} [/mm] : |y| <= min {1, [mm] \bruch{1}{x} [/mm] }, 0<x<10 }
b) [mm] M_{2} [/mm] = {(x,y) [mm] \in \IR^{2} [/mm] : |y| <= sin [mm] {\bruch{1}{x} }, x>0}\cup [/mm] {(0,y):|y|<=1}
c) [mm] M_{3} [/mm] = [mm] \bigcup_{i=1}^{n} [/mm] (n,n+1) [mm] \times (\bruch{1}{n+1}, \bruch{1}{n}) [/mm] |
Hallo,
ich weiß nicht so richtig wie ich an die Aufgaben rangehen soll.
bei der a) habe ich gedacht dass es abgeschlossen ist, und weder offen noch beschränkt, weiß aber nicht wie ich das zeigen soll
zur Beschränktheit eine allgemeine Frage, muss ich zwei beliebige elemente der menge nehmen und zeigen dass die euklidische norm der differenz dieser beiden elemente beschränkt ist?
Bei deu b) habe ich gedacht, dass die menge unbeschränkt ist, weil der x-wert unbeschränkt ist, ansonsten weiß ich nicht so recht weiter
bei der c) weiß ich gar nicht weiter
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Di 05.05.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|