www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - auflösen nach x
auflösen nach x < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

auflösen nach x: problem beim auflösen nach x
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 28.03.2005
Autor: komodor

Hallo Mathefans,

ich habe ein kleines Problem mit folgener aufgabe!

[mm] e^x [/mm] + e^(2x) - 2 = 0

mein lösungsweg:
ln [mm] (e^x) [/mm] + ln (e^(2x)) - ln 2 = 0

da ln [mm] e^x [/mm] = x ist und ln e^(2x) = 2x ist folgt daraus ja

<=> x + 2x - ln 2 = 0
<=> 3x = ln 2
<=>   x = (ln 2)/3

das sind ungefähr 0,23104906!

das problem ist, dass x = 0 sein muss, damit die aufgabe erfüllt ist! da [mm] e^0 [/mm] ja 1 ist
und 1 + 1 - 2 = 0 ist! setzt man jedoch mein ergebnis ein kommt da nur müll raus :(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
auflösen nach x: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:30 Mo 28.03.2005
Autor: MathePower

Hallo,

setze in der Gleichung

[mm]e^{2x} \; + \;e^x \; - \;2\; = \;0[/mm]

[mm]z\; = \;e^{x} [/mm]

Dann erhältst Du eine quadratische Gleichung:

[mm]z^{2} \; + \;z\; - \;2\; = \;0[/mm]

Aus dieser Gleichung werden die Lösungen bestimmt.
Dabei sind allerdings nur positive Lösungen für z zu betrachten.

Rücktransformation liefert die entsprechenden x- Werte.

Gruß
MathePower

Bezug
        
Bezug
auflösen nach x: Fehler!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Mo 28.03.2005
Autor: Marcel

Hallo!

> Hallo Mathefans,
>  
> ich habe ein kleines Problem mit folgener aufgabe!
>  
> [mm]e^x[/mm] + e^(2x) - 2 = 0
>  
> mein lösungsweg:
>  ln [mm](e^x)[/mm] + ln (e^(2x)) - ln 2 = 0

Leider ist das nicht in Ordnung, da ja i.A.:
[mm] $\ln(a+b)\not=\ln(a)+\ln(b)$ [/mm] ist.

Schau dir bitte nochmal die MBLogarithmusgesetze an!

Viele Grüße,
Marcel

Bezug
        
Bezug
auflösen nach x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Mo 28.03.2005
Autor: komodor

vielen dank! auf die einfachste lösung komm ich irgendwie nie!

naja, ziemlich logisch!

Für alle die komplette rechnung nun:

[mm] e^x [/mm] + [mm] e^{2x} [/mm] - 2 = 0
setze [mm] e^x [/mm] = z
=> z + [mm] z^2 [/mm] - 2 = 0
nun quadratisch ergänzen
=>   [mm] (z+1/2)^2 [/mm] - 2 = 0
<=> [mm] (z+1/2)^2 [/mm] = 9/4
<=> z+1/2 = 3/2 v z+1/2 = -3/2
<=> z = 1 v z = -2
resubstituieren
=> [mm] e^x [/mm] = 1 v [mm] e^x [/mm] = -2
<=> ln [mm] e^x [/mm] = ln 1
da [mm] e^x [/mm] immer >0 ist [mm] e^x [/mm] = -2 unlösbar
<=> x = ln 1
<=> x = 0



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]