www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - angeordneter Körper
angeordneter Körper < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

angeordneter Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mo 31.10.2005
Autor: nicole12

Hallo!
Hab da ne Aufgabe mit der ich nix anfangen kann.

Seien a, b, c, d Elemente eines angeordneten Körpers.Beweisen sie die Ungleichungen:

a)  [mm] a^{2}+b^{2} \ge [/mm] 2ab

b) [mm] a^{2}+b^{2}+c^{2}\ge [/mm] ab+bc+ca

c)  [mm] a^{4}+b^{4}+c^{4}+d^{4}\ge [/mm] 4abcd

Weiß bei allen drei Aufgaben nicht wie ich das machen muss und wie ich das korrekt aufschreibe.
Wär um eine Hilfe sehr dankbar.Viele liebe Grüße und schonmal im Vorraus ein ganz liebes Dankeschön an die, die versuchen mir zu helfen.Nicole

        
Bezug
angeordneter Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 31.10.2005
Autor: Hanno

Hallo Nicole!

a)  $ [mm] a^{2}+b^{2} \ge [/mm] $ 2ab

Das ist äquivalent zu [mm] $(a-b)^2\geq [/mm] 0$, was man leicht aus den Ordnungsaxiomen ableiten kann [mm] ($x^2\geq [/mm] 0$ für alle [mm] $x\in \IK)$. [/mm]

b) $ [mm] a^{2}+b^{2}+c^{2}\ge [/mm] $ ab+bc+ca

Nach (a) gilt [mm] $a^2+b^2\geq 2ab,b^2+c^2\geq [/mm] 2bc, [mm] c^2+a^2\geq [/mm] 2ac$. Addiere die drei Ungleichungen, dann steht die zu beweisen Ungleichung schon da.

c)  $ [mm] a^{4}+b^{4}+c^{4}+d^{4}\ge [/mm] $ 4abcd

Nach (a) gilt [mm] $a^4+b^4\geq 2a^2+b^2$, [/mm] analoges für die Paare $(b,c),(c,d)$ und $(d,a)$. Addierst du diese vier Ungleichungen, erhältst du [mm] $a^4+b^4+c^4+d^4\geq (ab)^2+(bc)^2+(cd)^2+(da)^2$. [/mm] Nun wenden wir nochmals (a) an: es ist [mm] $(ab)^2+(cd)^2\geq [/mm] 2abcd$, ebenso [mm] $(bc)^2+(dc)^2\geq [/mm] 2abcd$. Also erhalten wir zusammen [mm] $a^4+b^4+c^4+d^4\geq (ab)^2+(bc)^2+(cd)^2+(da)^2\geq [/mm] 2abcd+2abcd=4abcd$, was zu zeigen war.


Liebe Grüße,
Hanno

Bezug
                
Bezug
angeordneter Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Mo 31.10.2005
Autor: nicole12

wollt mich bedanken für die schnelle, übersichtliche und super nachvollziehbare Antwort bedanken!!!!Hab das jetzt voll kapiert.Gruß Nicole

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]