www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Transformationen" - allg Lös. Randwertprob. Diffgl
allg Lös. Randwertprob. Diffgl < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allg Lös. Randwertprob. Diffgl: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:47 Do 03.12.2015
Autor: Teryosas

Aufgabe
Bestimmen Sie Sie mit Hilfe von Separationsansatz und anschließend Superposition eine möglichst allgemeine Lösung des folgenden Randwertproblems für die Diffusionsgleichung:

[mm] \bruch{\partial u}{\partial t}(x,t) [/mm] = [mm] c^2\bruch{\partial^2 u}{\partial x^2}(x,t) [/mm] für 0 [mm] \le [/mm] x [mm] \le \pi [/mm] , t [mm] \ge [/mm] 0
[mm] \bruch{\partial u}{\partial x}(0,t) [/mm] = [mm] u(\pi,t) [/mm] = 0  für t [mm] \ge [/mm] 0

Hierbei ist c > 0 eine Konstante.

hey,
Also ich habe von einer ähnlichen Aufgabe die Musterlösung von letztem Jahr und versuche mich daran zu orientieren.
Würde gerne wissen ob meine Lösung richtig ist?

Trennung der Veränderlichen:
u(x,t) = X(x)T(t)                0 [mm] \le [/mm] x [mm] \le \pi [/mm] , t [mm] \ge [/mm] 0

Das führt zu:

[mm] \bruch{\partial u}{\partial t}(x,t) [/mm] = X(x)T'(t)                  [mm] \bruch{\partial^2 u}{\partial x^2}(x,t)=X''(x)T(t) [/mm]          0 [mm] \le [/mm] x [mm] \le \pi [/mm] , t [mm] \ge [/mm] 0

sodass gelten muss:

[mm] \bruch{T'(t)}{T(t)} [/mm] = [mm] c^2 \bruch{X''(x)}{X(x)} [/mm]                         0 [mm] \le [/mm] x [mm] \le [/mm] L , t [mm] \ge [/mm] 0
Dabei ist [mm] X(x)\not=0 [/mm] und [mm] T(t)\not=0 [/mm] für alle 0 [mm] \le [/mm] x [mm] \le [/mm] L , t [mm] \ge [/mm] 0

Dies ergibt:
[mm] \bruch{T'(t)}{T(t)} [/mm] = [mm] c^2 \bruch{X''(x)}{X(x)} =-s^2 [/mm]                  für 0 [mm] \le [/mm] x [mm] \le \pi [/mm] , t [mm] \ge [/mm] 0   und mit s [mm] \ge [/mm] 0

es folgt:
[mm] X''(x)+(\bruch{s}{c})^2X(x) [/mm] = 0    für 0 [mm] \le [/mm] x [mm] \le \pi [/mm]
[mm] T'(t)+s^{2}T(t) [/mm] = 0                            für t [mm] \ge [/mm] 0

für [mm] s\ge [/mm] 0 erhält man nun die Lösungen:

[mm] \varphi_{s}(x,t) [/mm] = [mm] cos(\bruch{s}{c}x)e^{-s^2t} [/mm]          
[mm] \psi_{s}(x,t) [/mm] = [mm] sin(\bruch{s}{c}x)e^{-s^2t} [/mm]      für 0 [mm] \le [/mm] x [mm] \le \pi [/mm] , t [mm] \ge [/mm] 0

Wegen [mm] e^{-s^2t} \not= [/mm] 0 und für alle [mm] t\ge [/mm] 0 wird Betrachtung von [mm] \varphi_{s} [/mm] und [mm] \psi_{s} [/mm] beschränkt.

Wegen [mm] \bruch{\partial \psi_{s}}{\partial x}(0,t) [/mm] = [mm] \bruch{s}{c}cos(\bruch{s}{c}x)e^{-s^2t} |_{x=0} [/mm] = [mm] \bruch{s}{c}cos(\bruch{s}{c}0)e^{-s^2t} [/mm] = [mm] \bruch{s}{c}e^{-s^2t} \not=0 [/mm]
-> [mm] s\not= [/mm] 0

und [mm] \psi_{0}=0 [/mm] kommt nur [mm] \varphi_{s} [/mm] für weitere Betrachtung in Frage.

----------------------------------------------------------
Ab hier bin ich mir nicht mehr 100% sicher.
----------------------------------------------------------

[mm] \bruch{\partial \varphi_{s}}{\partial x}(0,t) [/mm] = [mm] -\bruch{s}{c}sin(\bruch{s}{c}x)e^{-s^2t} |_{x=0} [/mm]  = [mm] -\bruch{s}{c}sin(\bruch{s}{c}0)e^{-s^2t} [/mm] = 0

In dem Punkt [mm] x=\pi [/mm] führt die Randbedingung auf
[mm] \varphi_{s}(\pi,t) [/mm] = [mm] \bruch{s}{c}cos(\bruch{s}{c}x)e^{-s^2t} |_{x=\pi} [/mm] = [mm] \bruch{s}{c}cos(\bruch{s}{c}\pi)e^{-s^2t} [/mm] =! 0    
was für [mm] \bruch{s\pi}{c} \in {0,\pi , 2\pi ,3\pi ,.....} [/mm] erfüllt ist.

Dies bedeutet: [mm] s\in [/mm] {nc : n =0,1,2,....}

Somit stellt die Funktion:
[mm] u_{n}(x,t):=cos(nx)e^{-(nc)^2t} [/mm]        für 0 [mm] \le [/mm] x [mm] \le \pi [/mm] , t [mm] \ge [/mm] 0 , n=1,2,.....,

jeweils eine Lösungen dar.

Die Superposition liefert:
u(x,t) = [mm] \summe_{n=0}^{\infty} a_{n}u_{n}(x,t) [/mm] = [mm] \summe_{n=0}^{\infty}a_{n}cos(nx)e^{-(nc)^2t} [/mm]       für für 0 [mm] \le [/mm] x [mm] \le \pi [/mm] , t [mm] \ge [/mm] 0



stimmt das so??

        
Bezug
allg Lös. Randwertprob. Diffgl: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Sa 05.12.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]