www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Äquivalenzrelation, trivial
Äquivalenzrelation, trivial < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation, trivial: reelle Folge
Status: (Frage) beantwortet Status 
Datum: 03:17 Mi 17.12.2014
Autor: YuSul

Aufgabe
Es bezeichne [mm] $\mathcal{M}$ [/mm] die Menge der reellwertigen Folgen [mm] $(a_n)_{n\in\mathbb{N}}$, [/mm] so dass an [mm] $a_n\neq [/mm] 0$ für alle bis auf endlich
viele $n$. Weiterhin schreiben wir [mm] $(a_n)_{n\in\mathbb{N}}\sim(b_n)_{n\in\mathbb{N}}$ [/mm] für [mm] $(a_n)_{n\in\mathbb{N}}$ [/mm] und [mm] $(b_n)_{n\in\mathbb{N}}$ [/mm] aus [mm] $\mathcal{M}$, [/mm] falls

[mm] $\lim_{n\to\infty}\frac{a_n}{b_n}=1$. [/mm]

(I) Zeigen Sie, dass [mm] $\sim$ [/mm] eine Äquivalenzrelation auf [mm] $\mathcal{M}$ [/mm] definiert.
(II) Zeigen Sie die folgende Produktregel. Gilt [mm] $(a_n)_{n\in\mathbb{N}}\sim(a'_n)_{n\in\mathbb{N}}$ [/mm] und [mm] $(b_n)_{n\in\mathbb{N}}\sim(b'_n)_{n\in\mathbb{N}}$, [/mm] so gilt
auch [mm] $(a_nb_n)_{n\in\mathbb{N}}\sim(a'_nb'_n)_{n\in\mathbb{N}}$ [/mm]

Hi,

ich wollte fragen ob ich diese Aufgabe, welche mir ziemlich trivial vorkommt, richtig gelöst habe.

Ich schreibe anstelle von [mm] $(a_n)_{n\in\mathbb{N}}$ [/mm] im Folgenden [mm] $(a_n)$ [/mm]

1. Reflexivität:

[mm] $(a_n)\sim(a_n)$ [/mm]

[mm] $\lim_{n\to\infty} \frac{a_n}{a_n}=1$ [/mm] ist trivialerweise erfüllt.

2. Symmetrie:

Sei [mm] $(a_n)\sim(b_n)$. [/mm] Zu zeigen: [mm] $(b_n)\sim(a_n)$ [/mm]

Wegen [mm] $\lim_{n\to\infty} \frac{a_n}{b_n}=1$ [/mm] sind [mm] $(a_n), (b_n)$ [/mm] entweder divergent oder konvergent. Im Falle der Konvergenz stimmen die Grenzwerte der Folgen überein, nach den Grenzwertsätzen.
Im Falle von bestimmter divergenz ist [mm] $(a_n)=(b_n)$ [/mm] für alle [mm] $n\in\mathbb{N}$. [/mm]

Also:

[mm] $\lim_{n\to\infty} \frac{a_n}{b_n}=\lim_{n\to\infty}\frac{b_n}{a_n}=1\Rightarrow (b_n)\sim(a_n)$ [/mm]

3. Transitivität:

Sei [mm] $(a_n)\sim(b_n)$ [/mm] und [mm] $(b_n)\sim(c_n)$ [/mm]

Zeige:

[mm] $(a_n)\sim(c_n)$ [/mm]

Analog zur Symmetrie gilt [mm] $(b_n)=(c_n)$ [/mm] für alle [mm] $n\in\mathbb{N}$ [/mm] oder [mm] $\lim_{n\to\infty} b_n=\lim_{n\to\infty} c_n$ [/mm]

Somit:

[mm] $\lim_{n\to\infty} \frac{a_n}{b_n}=\lim_{n\to\infty} \frac{a_n}{c_n}=1\Rightarrow (a_n)\sim(c_n)$ [/mm]

Natürlich ist [mm] $(a_n)$ [/mm] genau dann konvergent/divergent wenn [mm] $(b_n)$ [/mm] konvergiert/divergiert.

Reicht das so?

II)

Das folgt direkt aus den Grenzwersätzen. Ich habe zwei konvergente Folgen, die kann ich multiplizieren, und der Grenzwert bleibt 1. Damit folgt direkt

[mm] $(a_na'_n)\sim [/mm] (b_nb'_n)$

Ich kann den Rechenweg nochmal explizit hinschreiben, wenn gewünscht.

Vielen Dank fürs drüber gucken.

mfg

        
Bezug
Äquivalenzrelation, trivial: Antwort
Status: (Antwort) fertig Status 
Datum: 06:10 Mi 17.12.2014
Autor: fred97


> Es bezeichne [mm]\mathcal{M}[/mm] die Menge der reellwertigen Folgen
> [mm](a_n)_{n\in\mathbb{N}}[/mm], so dass an [mm]a_n\neq 0[/mm] für alle bis
> auf endlich
>  viele [mm]n[/mm]. Weiterhin schreiben wir
> [mm](a_n)_{n\in\mathbb{N}}\sim(b_n)_{n\in\mathbb{N}}[/mm] für
> [mm](a_n)_{n\in\mathbb{N}}[/mm] und [mm](b_n)_{n\in\mathbb{N}}[/mm] aus
> [mm]\mathcal{M}[/mm], falls
>  
> [mm]\lim_{n\to\infty}\frac{a_n}{b_n}=1[/mm].
>  
> (I) Zeigen Sie, dass [mm]\sim[/mm] eine Äquivalenzrelation auf
> [mm]\mathcal{M}[/mm] definiert.
>  (II) Zeigen Sie die folgende Produktregel. Gilt
> [mm](a_n)_{n\in\mathbb{N}}\sim(a'_n)_{n\in\mathbb{N}}[/mm] und
> [mm](b_n)_{n\in\mathbb{N}}\sim(b'_n)_{n\in\mathbb{N}}[/mm], so gilt
>  auch
> [mm](a_nb_n)_{n\in\mathbb{N}}\sim(a'_nb'_n)_{n\in\mathbb{N}}[/mm]
>  Hi,
>  
> ich wollte fragen ob ich diese Aufgabe, welche mir ziemlich
> trivial vorkommt, richtig gelöst habe.
>
> Ich schreibe anstelle von [mm](a_n)_{n\in\mathbb{N}}[/mm] im
> Folgenden [mm](a_n)[/mm]
>  
> 1. Reflexivität:
>  
> [mm](a_n)\sim(a_n)[/mm]
>  
> [mm]\lim_{n\to\infty} \frac{a_n}{a_n}=1[/mm] ist trivialerweise
> erfüllt.
>  
> 2. Symmetrie:
>  
> Sei [mm](a_n)\sim(b_n)[/mm]. Zu zeigen: [mm](b_n)\sim(a_n)[/mm]
>  
> Wegen [mm]\lim_{n\to\infty} \frac{a_n}{b_n}=1[/mm] sind [mm](a_n), (b_n)[/mm]
> entweder divergent oder konvergent. Im Falle der Konvergenz
> stimmen die Grenzwerte der Folgen überein, nach den
> Grenzwertsätzen.
> Im Falle von bestimmter divergenz ist [mm](a_n)=(b_n)[/mm] für alle
> [mm]n\in\mathbb{N}[/mm].

Das ist doch Unsinn !

Aus [mm]\lim_{n\to\infty} \frac{a_n}{b_n}=1[/mm]  folgt doch sofort

     [mm]\lim_{n\to\infty} \frac{b_n}{a_n}=1[/mm] .


>
> Also:
>
> [mm]\lim_{n\to\infty} \frac{a_n}{b_n}=\lim_{n\to\infty}\frac{b_n}{a_n}=1\Rightarrow (b_n)\sim(a_n)[/mm]
>  
> 3. Transitivität:
>  
> Sei [mm](a_n)\sim(b_n)[/mm] und [mm](b_n)\sim(c_n)[/mm]
>  
> Zeige:
>  
> [mm](a_n)\sim(c_n)[/mm]
>  
> Analog zur Symmetrie gilt [mm](b_n)=(c_n)[/mm] für alle
> [mm]n\in\mathbb{N}[/mm] oder [mm]\lim_{n\to\infty} b_n=\lim_{n\to\infty} c_n[/mm]

Auch das ist Unfug.

Aus [mm]\lim_{n\to\infty} \frac{a_n}{b_n}=1[/mm] und [mm]\lim_{n\to\infty} \frac{b_n}{c_n}=1[/mm]  folgt

[mm] \frac{a_n}{c_n}= \frac{a_n}{b_n}* \frac{b_n}{c_n} \to [/mm] 1.


>  
> Somit:
>  
> [mm]\lim_{n\to\infty} \frac{a_n}{b_n}=\lim_{n\to\infty} \frac{a_n}{c_n}=1\Rightarrow (a_n)\sim(c_n)[/mm]
>  
> Natürlich ist [mm](a_n)[/mm] genau dann konvergent/divergent wenn
> [mm](b_n)[/mm] konvergiert/divergiert.
>  
> Reicht das so?
>  
> II)
>  
> Das folgt direkt aus den Grenzwersätzen. Ich habe zwei
> konvergente Folgen, die kann ich multiplizieren, und der
> Grenzwert bleibt 1. Damit folgt direkt
>  
> [mm](a_na'_n)\sim (b_nb'_n)[/mm]
>  
> Ich kann den Rechenweg nochmal explizit hinschreiben, wenn
> gewünscht.

Das wäre nicht schlecht, denn obien hast Du einiges an Unsinn verzapft,

FRED

>  
> Vielen Dank fürs drüber gucken.
>  
> mfg


Bezug
                
Bezug
Äquivalenzrelation, trivial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mi 17.12.2014
Autor: YuSul

Dann war der erste Teil der Aufgabe ja noch einfacher als gedacht...
Du hast natürlich recht, dass das quatsch war.

Zum zweiten Teil:

Es ist [mm] $(a_n)\sim(a'_n)$ [/mm] und [mm] $(b_n)\sim(b'_n)$, [/mm] also

[mm] $\lim_{n\to\infty} \frac{a_n}{a'_n}=1$ [/mm] und

[mm] $\lim_{n\to\infty} \frac{b_n}{b'_n}=1$ [/mm]

Also sind die entsprechenden Folgen konvergent und nach den Grenzwertsätzen ist

[mm] $\lim_{n\to\infty} \frac{a_nb_n}{a'_nb'_n}=1$ [/mm]

Also [mm] $(a_nb_n)\sim(a'_nb'_n)$ [/mm]

Bezug
                        
Bezug
Äquivalenzrelation, trivial: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mi 17.12.2014
Autor: fred97


> Dann war der erste Teil der Aufgabe ja noch einfacher als
> gedacht...
>  Du hast natürlich recht, dass das quatsch war.
>  
> Zum zweiten Teil:
>  
> Es ist [mm](a_n)\sim(a'_n)[/mm] und [mm](b_n)\sim(b'_n)[/mm], also
>  
> [mm]\lim_{n\to\infty} \frac{a_n}{a'_n}=1[/mm] und
>  
> [mm]\lim_{n\to\infty} \frac{b_n}{b'_n}=1[/mm]
>  
> Also sind die entsprechenden Folgen konvergent und nach den
> Grenzwertsätzen ist

Hä ? welche Folgen meinst Du ?

Keine der 4 Folgen [mm] $(a_n), [/mm] (a'_n) ,  [mm] (b_n) [/mm] $ und $(b'_n)$ muss konvergieren !

Hehmen wir z.B.  wir [mm] a_n=a_n'=sin(e^n) [/mm] und [mm] b_n=b_n'= e^{cos(ln(n))} [/mm]


>  
> [mm]\lim_{n\to\infty} \frac{a_nb_n}{a'_nb'_n}=1[/mm]
>  
> Also [mm](a_nb_n)\sim(a'_nb'_n)[/mm]

O.K.

FRED


Bezug
                                
Bezug
Äquivalenzrelation, trivial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Mi 17.12.2014
Autor: YuSul

Ich meinte das so, wenn ich

[mm] $\frac{a_n}{b_n}=:c_n$ [/mm] als neue Folge definiere, dann ist diese offensichtlich konvergent mit Grenzwert 1. Also funktionieren die Grenzwertsätze.

Hätte ich dazuschreiben sollen.

Bezug
                                        
Bezug
Äquivalenzrelation, trivial: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Mi 17.12.2014
Autor: fred97


> Ich meinte das so, wenn ich
>
> [mm]\frac{a_n}{b_n}=:c_n[/mm] als neue Folge definiere, dann ist
> diese offensichtlich konvergent mit Grenzwert 1. Also
> funktionieren die Grenzwertsätze.

O.K.

FRED

>  
> Hätte ich dazuschreiben sollen.


Bezug
                                                
Bezug
Äquivalenzrelation, trivial: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Mi 17.12.2014
Autor: YuSul

Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]