www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Äquivalenzrelation
Äquivalenzrelation < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:45 Mi 15.11.2006
Autor: Franzie

Aufgabe
Betrachten Sie den Kontext [mm] (G^2,2^G,I), [/mm] wobei G eine beliebige Menge ist und I die Inszidenzrelation I gegeben sei durch [mm] ((g,h),A):\gdw [/mm] (g [mm] \in [/mm] A [mm] \gdw [/mm] h [mm] \in [/mm] A). Zeigen Sie, dass jeder Umfang des Begriffsverbands eine Äquivalenzrelation ist. Kommt jede Äquivalenzrelation als Umfang vor?

Hallöchen ihr Lieben!

Also was ich zu zeigen hab für die obige Aufgabe ist doch
a) Reflexivität
b) Symmetrie
c) Transitivität
1. Frage: Muss ich auch noch die Verträglichkeit der Operation zeigen?

So, nun weiß ich aber nicht genau, wie ich das nachweisen soll bzw. wie ich überhaupt daran gehen soll.
zu a) ((g,h),A)muss doch jetzt in Relation zu ((g,h),A) stehen, oder?
zu b) ((g,h),A) muss in Relation stehen zu (A,(g,h))
zu c) aus ((g,h),A) steht in Relation zu ((j,k),B) und ((j,k),B) steht in Relation zu ((l,m),C) muss folgen, dass ((g,h),A) in Relation zu ((l,m),C) steht.
Ist dieser Gedankengang soweit schon richtig? Hier weiß ich jetzt nicht, wie ich die Bedingung [mm] ((g,h),A):\gdw [/mm] (g [mm] \in [/mm] A [mm] \gdw [/mm] h [mm] \in [/mm] A) einbringen soll. Wäre nett, wenn ihr mir einen Anstoß geben könntet, meinetwegen bezüglich der Reflexivität.

Danke schon mal für die Hilfe

        
Bezug
Äquivalenzrelation: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:30 Fr 17.11.2006
Autor: Franzie

Also ich hab den ersten Teil der Aufgabe hingekriegt. Aber ich verstehe nicht, was die denn mit der zweiten Frage meinen, ob jede Äquivalenzrelation als Umfang vorkommt. Was muss ich denn da machen?

liebe Grüße

Bezug
        
Bezug
Äquivalenzrelation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Mo 20.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]