www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Zur Koordinatenform
Zur Koordinatenform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zur Koordinatenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Di 20.09.2011
Autor: daHansVonNebenAn

Aufgabe
Bestimmen sie aus der Parameterform die Koordinatenform!
E: x=(1|-2|-7)+s*(-9|0|12)+t*(16|0|12)

Ich habe es mit folgendem Ansatz probiert:
n*u=0
n*v=0
doch dann kommt immer für jedes n 0 raus, das stimmt ja dann nicht weil man dann zu keiner koordinatenebene kommt. Was mache ich falsch? Ich komme einfach nicht drauf.. Bitte um Hilfe! :)

        
Bezug
Zur Koordinatenform: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Di 20.09.2011
Autor: mathemak

Hallo!

> Bestimmen sie aus der Parameterform die Koordinatenform!
>  E: x=(1|-2|-7)+s*(-9|0|12)+t*(16|0|12)
>  Ich habe es mit folgendem Ansatz probiert:
> n*u=0
>  n*v=0

Muss auch funktionieren. Aber ohne genauere Angaben bzw. Lösungsansätze kann ich da nichts erkennen. Du erhälst ein vieldeutig lösbares LGS. Heraus kommt eben der Normalenvektor.

Die Richtungsvektoren der Ebenen schreien nach Vereinfachung. Beim ersten ziehst Du geschickt eine 3 heraus, beim zweiten eine 4.

Das ändert an der Ebene nichts, jedoch an der Rechnerei.

Und bei diesen einfachen Vektoren würde ich erstmal das Kreuz- oder Vektorprodukt benutzen, zumindest was den Grundgedanken angeht.

Du suchst einen Vektor, der orthogonal zu beiden Richtungsvektoren ist, d.h. das Skalarprodukt ist jeweils 0 (Dein Ansatz).

[mm] $\left( \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right)$ [/mm]

dürfte der einfachste aller möglichen Vektoren sein (scharfes hinschauen).

Dein Normalenvektor ist kollinear bzw. identisch zum Richtungsvektor der [mm] $x_2$-Achse. [/mm] Macht ja auch Sinn, da die Ebene parallel (verschieden) zur [mm] $x_1x_3$-Ebene [/mm] ist.

Dann packst Du das ganze in die Normalenform und löst auf.

[mm] $x_2 [/mm] = -2$.

>  doch dann kommt immer für jedes n 0 raus, das stimmt ja
> dann nicht weil man dann zu keiner koordinatenebene kommt.
> Was mache ich falsch? Ich komme einfach nicht drauf.. Bitte
> um Hilfe! :)

Vor dem Rechnen genauestens hinschauen!

Gruß

mathemak

Bezug
                
Bezug
Zur Koordinatenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Di 20.09.2011
Autor: daHansVonNebenAn

Ahhh, okay vielen Dank für die schnelle Rückmeldung!!
Das heißt ich habe mit x1=0 und x3=0 eigentlich richtige lösungen herausbekommen, nur dass x2 halt frei wählbar eigentlich ist oder? Das ist ja spitze! :) Und ich habe schon gedacht dass ich irgendwas blödes übersehen habe oder so..
Vielen Dank! =)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]