www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zerfällungskörper
Zerfällungskörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper: Rückfrage
Status: (Frage) überfällig Status 
Datum: 08:38 Do 15.05.2014
Autor: derriemann

Aufgabe
Galoisgruppe von [mm] f(x)=(x^{2}+1)(x^{3}+3) \in \IQ[x] [/mm]

Hi,

hab nur ne kurze Frage.

Nullstellen von [mm] f(x)=\{i,-i\}\{-\wurzel[3]{3},-\zeta\wurzel[3]{3},-\zeta^{2}\wurzel[3]{3}\}; \zeta=exp(\bruch{2\pi*i}{3}) [/mm]

Zerfällungskörper von f wäre dann [mm] \IQ(i,\wurzel[3]{3},\zeta) [/mm]
Könnte man den Zerfällungskörper nicht noch ein wenig reduzieren? Z.B. da ja gilt [mm] \IQ(\zeta)=\IQ(i\wurzel{3}), [/mm] also vllt. reduzieren auf [mm] \IQ(\wurzel[3]{3},i\wurzel{3})? [/mm] Habe jetzt ewig dran rumprobiert und bin leider auf kein Ergebnis gekommen...

LG :-)

        
Bezug
Zerfällungskörper: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 17.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Zerfällungskörper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Mi 21.05.2014
Autor: felixf

Moin,

> Galoisgruppe von [mm]f(x)=(x^{2}+1)(x^{3}+3) \in \IQ[x][/mm]
>  
> hab nur ne kurze Frage.
>  
> Nullstellen von
> [mm]f(x)=\{i,-i\}\{-\wurzel[3]{3},-\zeta\wurzel[3]{3},-\zeta^{2}\wurzel[3]{3}\}; \zeta=exp(\bruch{2\pi*i}{3})[/mm]

ich nehme mal an, dass du dich nicht verrechnet hast.

> Zerfällungskörper von f wäre dann
> [mm]\IQ(i,\wurzel[3]{3},\zeta)[/mm]

[ok]

>  Könnte man den Zerfällungskörper nicht noch ein wenig
> reduzieren? Z.B. da ja gilt [mm]\IQ(\zeta)=\IQ(i\wurzel{3}),[/mm]
> also vllt. reduzieren auf [mm]\IQ(\wurzel[3]{3},i\wurzel{3})?[/mm]

Nicht ganz, du kommst auf [mm] $\IQ(\sqrt[3]{3}, [/mm] i, [mm] i\sqrt{3})$, [/mm] oder auch [mm] $\IQ(\sqrt[3]{3}, \sqrt{3}, [/mm] i)$.

> Habe jetzt ewig dran rumprobiert und bin leider auf kein
> Ergebnis gekommen...

Zuerst einmal: du hast eine vierte ($i$) und eine dritte [mm] ($\zeta$) [/mm] primitive Einheitswurzel. Damit bekommst du eine zwölfte primitive Einheitswurzel: wegen $1 = (-1) [mm] \cdot [/mm] 3 + 1 [mm] \cdot [/mm] 4$ ist [mm] $i^{-1} \cdot \zeta [/mm] = -i [mm] \zeta$ [/mm] eine solche. (Beweisen musst du das aber noch selber.)

Damit hast du [mm] $\IQ(\sqrt[3]{3}, \zeta_{12})$ [/mm] als Zerfällungskörper. (Hieraus kannst du übrigens sehr einfach den Körpergrad bestimmen.)

Weiterhin kannst du aus [mm] $\sqrt[3]{3}$ [/mm] und [mm] $\sqrt{3}$ [/mm] eine sechste Wurzel von $3$ konstruieren, womit du [mm] $\IQ(\sqrt[6]{3}, [/mm] i)$ bekommst.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]