Zeilen- und Spaltenumformung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:12 Fr 16.01.2009 | Autor: | Firecrow |
Aufgabe | Bringen Sie folgende Matrizen durch elementare Zeilen- und Spaltenumformungen auf die Gestalt ( [mm] e_{1} [/mm] ... [mm] e_{r} [/mm] , 0, ..., 0):
[mm] \pmat{ 0 & 1 & 1 & 2 \\ 4 & 3 & 11 & -2 \\ 0 & 6 & 15 & 3 \\ 2 & -1 & -4 & 5 }
[/mm]
[mm] \pmat{ 3 & 3 & 0 & -2 \\ -2 & 0 & 2 & 3 \\ 1 & 4 & 0 & -1 }
[/mm]
[mm] \pmat{ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 } [/mm] |
Ich habe mit der 3x3 Matrix angefangen. Habe zuerst die Zeilenstufenform gebildet. Die sieht folgendermassen aus (wenn ich mich nich verrechnet hab;) )
[mm] \pmat{ 1 & 2 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 }
[/mm]
Dann habe ich versucht die Spaltenumformung anzuwenden und hänge jetzt an folgender Stelle.
[mm] \pmat{ 3 & 0 & -3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 }
[/mm]
An dieser Stelle häng ich jetzt. Ich hoffe ma, dass ich nich völlig falsch liege mit der Spaltenumformung.
Gruss Fire
|
|
|
|
Hallo Firecrow,
> Bringen Sie folgende Matrizen durch elementare Zeilen- und
> Spaltenumformungen auf die Gestalt ( [mm]e_{1}[/mm] ... [mm]e_{r}[/mm] , 0,
> ..., 0):
>
> [mm]\pmat{ 0 & 1 & 1 & 2 \\ 4 & 3 & 11 & -2 \\ 0 & 6 & 15 & 3 \\ 2 & -1 & -4 & 5 }[/mm]
>
> [mm]\pmat{ 3 & 3 & 0 & -2 \\ -2 & 0 & 2 & 3 \\ 1 & 4 & 0 & -1 }[/mm]
>
> [mm]\pmat{ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 }[/mm]
> Ich habe mit
> der 3x3 Matrix angefangen. Habe zuerst die Zeilenstufenform
> gebildet. Die sieht folgendermassen aus (wenn ich mich nich
> verrechnet hab;) )
> [mm]\pmat{ 1 & 2 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 }[/mm]
Ok, das stimmt.
>
> Dann habe ich versucht die Spaltenumformung anzuwenden und
> hänge jetzt an folgender Stelle.
> [mm]\pmat{ 3 & 0 & -3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 }[/mm]
Nimm die Matrix, die Du nach den Zeilenumformungen erhalten hast.
Jetzt mußt Du zuerst dafür sorgen, daß in der 1. Zeile eine 1
und sonst lauter Nullen stehen.
Wie erreichst Du das?
Der erste Schritt ist, das (-2)-fache der 1. Spalte zur 2. Spalte zu addieren.
Dann steht da:
[mm]\pmat{ 1 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 0 }[/mm]
Der zweite Schritt ist nun, das (-3)-fache der 1. Spalte zur 3. Spalte zu addieren.
Dies ergibt:
[mm]\pmat{ 1 & 0 & 0 \\ 0 & 3 & 6 \\ 0 & 0 & 0 }[/mm]
Und das machst Du jetzt mit der 2. Spalte genauso.
>
> An dieser Stelle häng ich jetzt. Ich hoffe ma, dass ich
> nich völlig falsch liege mit der Spaltenumformung.
>
> Gruss Fire
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:15 Fr 16.01.2009 | Autor: | Firecrow |
Ah. Danke Mathepower. Jetzt weiss ich wo mein Denkfehler war.
|
|
|
|