www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Zeigen einer Mengengleichheit
Zeigen einer Mengengleichheit < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen einer Mengengleichheit: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 11:05 So 28.10.2012
Autor: apple314

Aufgabe
Seien A,B,C,D und I beliebige nichtleere Mengen. Weiterhin sei für jedes i [mm] \in [/mm] I ein [mm] M_{i} \subseteq [/mm] D gegeben. Dann definieren die [mm] M_{i} [/mm] eine Abbildung I [mm] \to \mathcal{P}(D) [/mm] durch i [mm] \mapsto M_{i}. [/mm] Man nennt I "Indexmenge" zu der Menge { [mm] M_{i}|i \in [/mm] I} [mm] \subseteq \mathcal{P}(D). [/mm]

Zeigen Sie:
a) A \ (B [mm] \cup [/mm] C) = (A \ B) [mm] \cap [/mm] (A \ C)
b) A [mm] \times \bigcap_{i \in I} M_{i} [/mm] = [mm] \bigcap_{i \in I} [/mm] (A [mm] \times M_{i}) [/mm]
c) [mm] \bigcup_{i \in I} \mathcal{P}(M_{i}) \subseteq \mathcal{P}(\bigcup_{i \in I} M_{i}) [/mm]
d) Gilt in c) auch die umgekehrte Inklusion [mm] ("\supseteq")? [/mm] Belegen Sie Ihre Behauptung.

Hallo zusammen!

Für Aufgabe a) bin ich wie folgt vorgegangen:

A \ (B [mm] \cup [/mm] C) = (A \ B) [mm] \cap [/mm] (A \ C)  (=Distributivgesetz)

A \ (B [mm] \cup [/mm] C)
[mm] \gdw [/mm] x [mm] \in [/mm] A \ B [mm] \wedge [/mm] x [mm] \in [/mm] A \ C
[mm] \gdw [/mm] (A \ B) [mm] \cap [/mm] (A \ C) = A \ (B [mm] \cup [/mm] C)     [mm] \Box [/mm] .

Falls das so überhaupt richtig ist, würde ich behaupten, dass das ja noch relativ einfach war. Probleme treten für mich jetzt bei Aufgabe b) ff. auf. Ich hab versucht, mir die einzelnen AUssagen erstmal selbst grafisch darzustellen um mir so vielleicht zu helfen, aber irgendwie hab ich echte Probleme damit, die Aussage zu verstehen, geschweige denn, zu zeigen, dass sie wahr ist.

Wenn vielleicht jemand einen Tipp hätte, wie ich in der Sache vorankommen kann, wäre ich sehr dankbar!

Grüße,
apple314

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zeigen einer Mengengleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 So 28.10.2012
Autor: Pia90


> Seien A,B,C,D und I beliebige nichtleere Mengen. Weiterhin
> sei für jedes i [mm]\in[/mm] I ein [mm]M_{i} \subseteq[/mm] D gegeben. Dann
> definieren die [mm]M_{i}[/mm] eine Abbildung I [mm]\to \mathcal{P}(D)[/mm]
> durch i [mm]\mapsto M_{i}.[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Man nennt I "Indexmenge" zu der

> Menge { [mm]M_{i}|i \in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

I} [mm]\subseteq \mathcal{P}(D).[/mm]

>  
> Zeigen Sie:
>  a) A \ (B [mm]\cup[/mm] C) = (A \ B) [mm]\cap[/mm] (A \ C)
>  b) A [mm]\times \bigcap_{i \in I} M_{i}[/mm] = [mm]\bigcap_{i \in I}[/mm] (A
> [mm]\times M_{i})[/mm]
>  c) [mm]\bigcup_{i \in I} \mathcal{P}(M_{i}) \subseteq \mathcal{P}(\bigcup_{i \in I} M_{i})[/mm]
>  
> d) Gilt in c) auch die umgekehrte Inklusion [mm]("\supseteq")?[/mm]
> Belegen Sie Ihre Behauptung.
>  Hallo zusammen!
>  
> Für Aufgabe a) bin ich wie folgt vorgegangen:
>  
> A \ (B [mm]\cup[/mm] C) = (A \ B) [mm]\cap[/mm] (A \ C)  
> (=Distributivgesetz)
>  
> A \ (B [mm]\cup[/mm] C)
>  [mm]\gdw[/mm] x [mm]\in[/mm] A \ B [mm]\wedge[/mm] x [mm]\in[/mm] A \ C

Dürft ihr das benutzen bzw. habt ihr das schon bewiesen?

>  [mm]\gdw[/mm] (A \ B) [mm]\cap[/mm] (A \ C) = A \ (B [mm]\cup[/mm] C)     [mm]\Box[/mm] .

Ich weiß nicht, was ihr alles nutzen dürft und was nicht, aber ich wäre eher wie folgt vorgegangen
z.z. A \ (B [mm] \cup [/mm] C)
x [mm] \in [/mm] A \ (B [mm] \cup [/mm] C) [mm] \gdw [/mm] x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in [/mm] (B [mm] \cup C)^c \gdw [/mm] (mit de Morgan) x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in (B^c \cap C^c) [/mm] = ...

>  
> Falls das so überhaupt richtig ist, würde ich behaupten,
> dass das ja noch relativ einfach war. Probleme treten für
> mich jetzt bei Aufgabe b) ff. auf. Ich hab versucht, mir
> die einzelnen AUssagen erstmal selbst grafisch darzustellen
> um mir so vielleicht zu helfen, aber irgendwie hab ich
> echte Probleme damit, die Aussage zu verstehen, geschweige
> denn, zu zeigen, dass sie wahr ist.
>  
> Wenn vielleicht jemand einen Tipp hätte, wie ich in der
> Sache vorankommen kann, wäre ich sehr dankbar!
>  
> Grüße,
> apple314
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Zeigen einer Mengengleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 So 28.10.2012
Autor: tobit09

Hallo apple314 und herzlich [willkommenmr]!


> Probleme treten für
> mich jetzt bei Aufgabe b) ff. auf. Ich hab versucht, mir
> die einzelnen AUssagen erstmal selbst grafisch darzustellen
> um mir so vielleicht zu helfen, aber irgendwie hab ich
> echte Probleme damit, die Aussage zu verstehen, geschweige
> denn, zu zeigen, dass sie wahr ist.
>  
> Wenn vielleicht jemand einen Tipp hätte, wie ich in der
> Sache vorankommen kann, wäre ich sehr dankbar!

Spiel zunächst mal ein Beispiel durch! Ich gebe dir mal eines vor:
[mm] $I=\{1,2\}$, $A=\{13,27\}$, $D=\{a,b,c,d\}$, $M_1=\{a,b\}$, $M_2=\{b,c\}$. [/mm]

Berechne mal für dieses Beispiel
1. $A [mm] \times \bigcap_{i \in I} M_{i}$, [/mm]
2. [mm] $\bigcap_{i \in I} [/mm] (A [mm] \times M_{i})$, [/mm]
3. [mm] $\bigcup_{i \in I} \mathcal{P}(M_{i})$ [/mm] und
4. [mm] $\mathcal{P}(\bigcup_{i \in I} M_{i})$. [/mm]

Gehe dazu kleinschrittig vor.
Für 1. ersteinmal [mm] $\bigcap_{i\in I}M_i$ [/mm] bestimmen,
für 2. zuerst [mm] $(A\times M_1)$ [/mm] und [mm] $(A\times M_2)$, [/mm]
für 3. [mm] $\mathcal{P}(M_1)$ [/mm] und [mm] $\mathcal{P}(M_2)$ [/mm]
und schließlich für 4. [mm] $\bigcup_{i\in I}M_i$. [/mm]


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]