www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Wurzeln 2
Wurzeln 2 < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzeln 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Sa 20.03.2010
Autor: rotespinne

Und hier noch 2 weitere Aufgaben, an denen ich mich versucht habe:

"Forme in einen Term ohne Wurzelzeichen um. Gib einschränkende Bedingungen an."

[mm] \wurzel{a} [/mm] * [mm] \wurzel{a} [/mm] = a für a [mm] \ge [/mm] 0

[mm] \wurzel{2b} [/mm] * [mm] \wurzel{2b} [/mm] = 2|b| für b [mm] \ge [/mm] 0

[mm] (\wurzel{a^{2}}) [/mm] ^2 = [mm] a^{2} [/mm]

[mm] (\wurzel{16x}) [/mm] ^2 (soll hoch2 sein) =  16|x|

[mm] (\wurzel{a-b})^2 [/mm] = |a-b|

[mm] (\wurzel{a+b})^2 [/mm] = |a+b|

[mm] \wurzel{(-x-1)^{2}} [/mm] = |-x-1|

[mm] (\wurzel{-x-1})^2 [/mm] = |-x-1|

Hier habe ich folgende Frage: Wo genau liegt der Unterschied zwischen den letzten beiden Aufgaben? Das ist mir nicht wirklich klar :(

[mm] \wurzel{a+1} [/mm] * [mm] \wurzel{a+1} [/mm] = |a|+1

[mm] \wurzel{(a+1)^{2}} [/mm] = |a|+1

[mm] \wurzel{2x+y} [/mm] * [mm] \wurzel{2x+y} [/mm] = 2|x|+|y|

VIELEN DANK!!!

        
Bezug
Wurzeln 2: Korrekturen
Status: (Antwort) fertig Status 
Datum: 12:19 Sa 20.03.2010
Autor: Loddar

Hallo rotespinne!


> [mm]\wurzel{a}[/mm] * [mm]\wurzel{a}[/mm] = a für a [mm]\ge[/mm] 0

[ok]


  

> [mm]\wurzel{2b}[/mm] * [mm]\wurzel{2b}[/mm] = 2|b| für b [mm]\ge[/mm] 0

Die Betragsstriche sind überflüssig bei der Einschränkung $b \ [mm] \ge [/mm] \ 0$ .

  

> [mm](\wurzel{a^{2}})[/mm] ^2 = [mm]a^{2}[/mm]

[ok]


  

> [mm](\wurzel{16x})[/mm] ^2 (soll hoch2 sein) =  16|x|

[notok] Du musst erst sicherstellen, dass $16x \ [mm] \ge [/mm] \ 0$ .

  

> [mm](\wurzel{a-b})^2[/mm] = |a-b|

[notok] Du musst erst sicherstellen, dass $a-b \ [mm] \ge [/mm] \ 0$ .



> [mm](\wurzel{a+b})^2[/mm] = |a+b|

[notok] wie oben!


  

> [mm]\wurzel{(-x-1)^{2}}[/mm] = |-x-1|
>  
> [mm](\wurzel{-x-1})^2[/mm] = |-x-1|
>  
> Hier habe ich folgende Frage: Wo genau liegt der
> Unterschied zwischen den letzten beiden Aufgaben? Das ist
> mir nicht wirklich klar :(

Du musst immer erst sicherstellen, dass der Ausdruck unter (je)der Wurzel [mm] $\ge [/mm] \ 0$ ist.


  

> [mm]\wurzel{a+1}[/mm] * [mm]\wurzel{a+1}[/mm] = |a|+1

[notok] Wenn dann Betragsstriche um den Gesamtterm.
Du musst aber zunächst sicherstellen, dass gilt: $a+1 \ [mm] \ge [/mm] \ 0$ .

  

> [mm]\wurzel{(a+1)^{2}}[/mm] = |a|+1

[notok] Wenn dann Betragsstriche um den Gesamtterm.


> [mm]\wurzel{2x+y}[/mm] * [mm]\wurzel{2x+y}[/mm] = 2|x|+|y|

[notok] Wenn dann Betragsstriche um den Gesamtterm.
Du musst aber zunächst sicherstellen, dass gilt: $2x+y \ [mm] \ge [/mm] \ 0$ .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]