www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Wurzelkriterium Beweis
Wurzelkriterium Beweis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelkriterium Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Do 09.02.2012
Autor: EvelynSnowley2311

huhu,

mal ne Frage: Würde es als Beweis nicht ausreichen so zu argumentieren?

Sei [mm] \wurzel[n]{|a_{n}|} [/mm] < 1, dann gibt es ein q [mm] \in [/mm] (0,1) mit [mm] \wurzel[n]{|a_{n}|} \le [/mm] q   .

Kann ich nicht jetzt einfach beide Seiten mit [mm] |^{n} [/mm] bearbeiten, sodass ich direkt auf [mm] |a_{n}| \le q^{n} [/mm] , dass ich direkt die Abschätzung mit der geometrischen Reihe als Majorante habe?

        
Bezug
Wurzelkriterium Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Do 09.02.2012
Autor: fred97


> huhu,
>  
> mal ne Frage: Würde es als Beweis nicht ausreichen so zu
> argumentieren?
>  
> Sei [mm]\wurzel[n]{|a_{n}|}[/mm] < 1,

Für welche , "wieviele" n soll das gelten ?

> dann gibt es ein q [mm]\in[/mm] (0,1)  mit [mm]\wurzel[n]{|a_{n}|} \le[/mm] q   .

Für welche , "wieviele" n soll das gelten ?

Ich vermute, Du meinst, dass aus [mm]\wurzel[n]{|a_{n}|}[/mm] < 1 für (fast) alle n [mm] \in \IN [/mm] folgt, dass es ein q [mm]\in[/mm] (0,1) gibt  mit [mm]\wurzel[n]{|a_{n}|} \le[/mm] q  für (fast) alle n [mm] \in \IN [/mm] .

Das stimmt aber nicht, wie man an der Folge [mm] a_n=1/n [/mm] sehen kann

Es ist  [mm]\wurzel[n]{|a_{n}|}[/mm] < 1 für alle n [mm] \ge [/mm] 2. Wenn man nun annimmt, dass es ein q [mm]\in[/mm] (0,1) gibt  mit [mm]\wurzel[n]{|a_{n}|} \le[/mm] q  für (fast) alle n [mm] \in \IN [/mm] , so würde folgen:

                   1 [mm] \le [/mm] q,

denn [mm] (\wurzel[n]{|a_{n}|}) [/mm] konvergiert gegen 1.

FRED





>  
> Kann ich nicht jetzt einfach beide Seiten mit [mm]|^{n}[/mm]
> bearbeiten, sodass ich direkt auf [mm]|a_{n}| \le q^{n}[/mm] , dass
> ich direkt die Abschätzung mit der geometrischen Reihe als
> Majorante habe?


Bezug
                
Bezug
Wurzelkriterium Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Do 09.02.2012
Autor: EvelynSnowley2311

hey,

ok etwas genauer ausgedrückt wäre es:

lim sup [mm] \wurzel[n]{|a_{n}|} [/mm] <1 => es exisitiert ein q [mm] \in [/mm] (0,1) und N [mm] \in \IN [/mm] mit [mm] |a_{n}| [/mm] < [mm] q^{n} [/mm] für alle n [mm] \ge [/mm] N. Nachdem Majorantenkriterium konvergiert die Reihe absolut, weil die geometrische Reihe konvergiert.  

Ist das hier so gemacht, dass man einfach auf beiden Seiten der Ungleichung [mm] |^{n} [/mm] rechnen kann?

Bezug
                        
Bezug
Wurzelkriterium Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Do 09.02.2012
Autor: fred97


> hey,
>  
> ok etwas genauer ausgedrückt wäre es:
>  
> lim sup [mm]\wurzel[n]{|a_{n}|}[/mm] <1 => es exisitiert ein q [mm]\in[/mm]
> (0,1) und N [mm]\in \IN[/mm] mit [mm]|a_{n}|[/mm] < [mm]q^{n}[/mm] für alle n [mm]\ge[/mm] N.
> Nachdem Majorantenkriterium konvergiert die Reihe absolut,
> weil die geometrische Reihe konvergiert.  
>
> Ist das hier so gemacht, dass man einfach auf beiden Seiten
> der Ungleichung [mm]|^{n}[/mm] rechnen kann?


Sei  a:=lim sup [mm]\wurzel[n]{|a_{n}|}[/mm]<1.

Ist dann q [mm] \in [/mm] (a,1), so gibt es ein N [mm] \in \IN [/mm] mit:                  



                   [mm] \wurzel[n]{|a_{n}|} \le [/mm] q  für alle n >N.

"Jetzt alles hoch n" liefert:

                  [mm] |a_n| \le q^n [/mm]  für alle n >N.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]