www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Wurzel ziehen
Wurzel ziehen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:04 Mi 20.10.2010
Autor: Kuriger

Hallo

r(t) = [mm] \vektor{\bruch{e^{4t}}{4} -t \\ e^{2t}} [/mm]
0 [mm] \le [/mm] t [mm] \le [/mm] 2
bestimmen Sie Anfangspunkt, Endpunkt und Länge des Weges des partikels Also bei der Länge habe ich gewisse Probleme in rechnerischer Hinsicht

v(t) = [mm] \dot{r} [/mm] (t) = [mm] \vektor{e^{4t} -1 \\ 2*e^{2t}} [/mm]

[mm] |v(t)|^2 [/mm] = [mm] (e^{4t} -1)^2 [/mm] + [mm] (2*e^{2t})^2 [/mm] = [mm] e^{8t} -2*e^{4t} [/mm] + 1+ [mm] 4e^{4t} [/mm] = [mm] e^{8t} [/mm] + 1+ [mm] 2e^{4t} [/mm]
Nun
|v(t)| = [mm] \wurzel{e^{8t} + 1+ 2e^{4t}} [/mm]
Doch wie kann ich davon die Wurzel nehmen?

gruss Kuriger

        
Bezug
Wurzel ziehen: binomische Formel
Status: (Antwort) fertig Status 
Datum: 10:05 Mi 20.10.2010
Autor: Loddar

Hallo!


Stichwort: binomische Formel!


Gruß
Loddar



Bezug
                
Bezug
Wurzel ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Mo 25.10.2010
Autor: Kuriger

Hallo

|v(t)| = [mm] \wurzel{e^{8t} + 1+ 2e^{4t}} [/mm] = [mm] \wurzel{(e^{4t} + 1)^2} [/mm] = [mm] e^{4t} [/mm] + 1

s(t) = L = [mm] \integral_{0}^{2}{e^{4t} + 1} [/mm] dt = [mm] (\bruch{1}{4}e^{4t} [/mm]  + t) ach wie kann ich das schon wieder richtig schreiben.... = [mm] (\bruch{1}{4} [/mm] * [mm] x^{8} [/mm] + 2) - [mm] (\bruch{1}{4}) [/mm]
Da stimmt was bei weitem Nicht [mm] \bruch{e^8}{4} [/mm] + [mm] \bruch{7}{4} [/mm] ergeben

Danke, gruss Kuriger



Bezug
                        
Bezug
Wurzel ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Mo 25.10.2010
Autor: fred97

Mir ist nicht klar , was Du getrieben hast, aber vielleicht ist Dir klar, was ich treibe:

Die gesuchte Länge ist gegeben durch:

          $L =  [mm] \integral_{0}^{2}{(e^{4t} + 1)} [/mm] ~ dt = [mm] [\bruch{1}{4}e^{4t}+t]_0^2= \bruch{1}{4}e^{8}+2-\bruch{1}{4}= \bruch{1}{4}e^{8}+\bruch{7}{4}$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]