www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Würfel
Würfel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Fr 04.03.2005
Autor: nitro1185

Hallo!!ich habe eine Frage zu folgender Aufageb.Bin mir nicht sicher ,ob mein Ansatz falsch ist.

In einem Becher sind zwei unterscheidbare ungezinkte Würfel .Der Becher wird geschüttelt und auf ein Tablett geleert.

Aufgabe: f: H ----> R; (i,j) ------> i+j

H ist die menge aller Elementarereignisse: H={(i,j) / i,j [mm] \in [/mm] {1,...,6}}

So nun soll ich folgendes berechnen:

[mm] \summe_{w \in H}^{36} [/mm] p(w)*f(w)

wobei p: w ---> [0,1] ; wahrscheinlichkeitsfunktion,die ich auch bestimmen musst

Meine idee:  w ---> 1/36

=>  [mm] \summe_{w \in H}^{36} [/mm] p(w)*f(w)= 1/36*  [mm] \summe_{w \in H}^{36} [/mm] *f(w) =

  1/36* [mm] \summe_{w \in H}^{36} [/mm] *(i+j)

Wie soll ich das noch weiter berechnen??mfg daniel


        
Bezug
Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Fr 04.03.2005
Autor: Stefan

Hallo Daniel!

Warum rechnest du denn keine konkreten Werte aus?

Es gilt ja:

[mm] $\summe_{w\in H} [/mm] p(w)f(w) = [mm] \summe_{k=2}^{12} P(\{(i,j) \in H\, : \, i+j=k\}) \cdot [/mm] k$.

Und weiter:

Das Ereignis "Augensumme $2$" hat die Wahrscheinlichkeit [mm] $\frac{1}{36}$. [/mm]
Das Ereignis "Augensumme $3$" hat die Wahrscheinlichkeit [mm] $\frac{2}{36}$. [/mm]
...
Das Ereignis "Augensumme $6$" hat die Wahrscheinlichkeit [mm] $\frac{5}{36}$. [/mm]
Das Ereignis "Augensumme $7$" hat die Wahrscheinlichkeit [mm] $\frac{6}{36}$. [/mm]
Das Ereignis "Augensumme $8$" hat die Wahrscheinlichkeit [mm] $\frac{5}{36}$. [/mm]
...
Das Ereignis "Augensumme $11$" hat die Wahrscheinlichkeit [mm] $\frac{2}{36}$. [/mm]
Das Ereignis "Augensumme $12$" hat die Wahrscheinlichkeit [mm] $\frac{1}{36}$. [/mm]

Jetzt muss du berechnen:

[mm] $\frac{1}{36} \cdot [/mm] 2 + [mm] \frac{2}{36} \cdot [/mm] 3 + [mm] \ldots$ [/mm]

Viele Grüße
Stefan

Bezug
                
Bezug
Würfel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Sa 05.03.2005
Autor: nitro1185

Hallo stefan!!

Danke für deine Antwort und Tipps!!!MFG Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]