www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Wer weiß es?
Wer weiß es? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wer weiß es?: Matrix hoch 0
Status: (Frage) beantwortet Status 
Datum: 16:40 Mi 08.12.2004
Autor: Shaguar

Moin

ich soll für 2 Matrizen [mm] A^n [/mm] genau angeben mit n [mm] \in \IZ. [/mm] Das habe ich geschafft für positive und negative n ziemlich schnell hingekriegt aber ich weiß nicht was bei n=0 rauskommt.

a)
A= [mm] \pmat{ 1 & 1 \\ 0 & 1 } [/mm]

Ich würde ja schätzen, dass entweder  [mm] \pmat{ 1 & 1 \\ 1 & 1 } [/mm] oder  [mm] \pmat{ 0 & 0 \\ 0 & 0 } [/mm] rauskommt. Da man aber diese Matrix allgemein auch so
[mm] \pmat{ 1 & n \\ 0 & 1 } [/mm] schreiben kann, könnte [mm] A^0 [/mm] ja auch   [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] sein.

b)

A= [mm] \pmat{ 0 & 1 \\ -1 & 0 } [/mm]

Hierfür habe ich jetzt keine allgemeine Form gefunden. Was ich noch sagen kann, dass sie bei der Multiplikation mit sich zyklisch ist.

Gibt es für [mm] A^0 [/mm] eine genaue Definition oder ist das von Matrix zu Matrix verschieden.

Habe ein bischen rumgestöbert aber nix dazu gefunden.

Vielen Dank für eine Antwort

Gruß Shaguar

        
Bezug
Wer weiß es?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Mi 08.12.2004
Autor: Julius

Hallo Shaguar!

Es gilt immer

[mm] $A^0 [/mm] = E$.

d.h. [mm] $A^0$ [/mm] ist die Einheitsmatrix.

> b)
>
> A= [mm]\pmat{ 0 & 1 \\ -1 & 0 }[/mm]
>
> Hierfür habe ich jetzt keine allgemeine Form gefunden. Was
> ich noch sagen kann, dass sie bei der Multiplikation mit
> sich zyklisch ist.

Dann gibt doch [mm] $A^n$ [/mm] mit Hilfe einer Fallunterscheidung an.

Unterscheide die Fälle

$n [mm] \equiv [/mm] 0 [mm] \pmod{4}$, [/mm]  $n [mm] \equiv [/mm] 1 [mm] \pmod{4}$, [/mm] $n [mm] \equiv [/mm] 2 [mm] \pmod{4}$ [/mm] und $n [mm] \equiv [/mm] 3 [mm] \pmod{4}$. [/mm]

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]