www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Wenn in 0 steig, ganz stetig
Wenn in 0 steig, ganz stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wenn in 0 steig, ganz stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Mi 17.12.2014
Autor: duduknow

Aufgabe
Gegeben sei Funktion [mm] $f:\mathbb{R} \rightarrow \mathbb{R}$ [/mm] mit der Eigenschaft $f(x + y) = f(x) + f(y)$ und $f$ stetig in $0$. Zeigen Sie: $f$ ist stetig auf [mm] $\mathbb{R}$. [/mm]

Hallo,

meine Idee zu dieser Aufgabe ist folgende:

Ich weiß, dass $f$ stetig ist in $0$, also [mm] $\lim_{x \rightarrow 0} [/mm] f(x) = f(0) = 0$ (denn $f(x) = f(x + 0) = f(x) + f(0) [mm] \Rightarrow [/mm] f(0) = 0$).

Wenn jetzt [mm] $x_0 \ne [/mm] 0$ ist, muss ich zeigen, dass [mm] $\lim_{x \rightarrow x_0} [/mm] f(x) = [mm] f(x_0)$ [/mm] ist:
[mm] $\lim_{x \rightarrow x_0} [/mm] f(x) = [mm] \lim_{x' \rightarrow \infty} f(x_0 \pm \frac{1}{x'}) [/mm] = [mm] \lim (f(x_0) \pm f(\frac{1}{x})) [/mm] = [mm] f(x_0)$, [/mm] indem ich $x' = [mm] \frac{1}{x - x_0}$ [/mm] substituiere.
Und daraus folgt die Behauptung, dass $f$ auf ganz [mm] $\mathbb{R}$ [/mm] stetig ist.

Ist das richtig argumentiert oder darf ich diese Substitution nicht machen?

Danke für eine Antwort und mit freundlichen Grüßen

        
Bezug
Wenn in 0 steig, ganz stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Mi 17.12.2014
Autor: Marcel

Hallo,

> Gegeben sei Funktion [mm]f:\mathbb{R} \rightarrow \mathbb{R}[/mm]
> mit der Eigenschaft [mm]f(x + y) = f(x) + f(y)[/mm] und [mm]f[/mm] stetig in
> [mm]0[/mm]. Zeigen Sie: [mm]f[/mm] ist stetig auf [mm]\mathbb{R}[/mm].
>  Hallo,
>  
> meine Idee zu dieser Aufgabe ist folgende:
>
> Ich weiß, dass [mm]f[/mm] stetig ist in [mm]0[/mm], also [mm]\lim_{x \rightarrow 0} f(x) = f(0) = 0[/mm]
> (denn [mm]f(x) = f(x + 0) = f(x) + f(0) \Rightarrow f(0) = 0[/mm]).

das ist okay, aber Du kannst es Dir auch etwas einfacher machen, und das
[mm] $x\,$ [/mm] konkretisieren. Ob Du nun

    $f(0)=f(0+0)=f(0)+f(0)$

oder

    $f(1)=f(1+0)=f(1)+f(0)$

schreibst, um [mm] $f(0)=0\,$ [/mm] zu erhalten (oder allgemein mit x), ist ja egal.

> Wenn jetzt [mm]x_0 \ne 0[/mm] ist, muss ich zeigen, dass [mm]\lim_{x \rightarrow x_0} f(x) = f(x_0)[/mm]
> ist:
> [mm]\lim_{x \rightarrow x_0} f(x) = \lim_{x' \rightarrow \infty} f(x_0 \pm \frac{1}{x'}) = \lim (f(x_0) \pm f(\frac{1}{x})) = f(x_0)[/mm],
> indem ich [mm]x' = \frac{1}{x - x_0}[/mm] substituiere.

Das ist ein bisschen komisch aufgeschrieben, aber die Idee ist in Ordnung.
An der Stelle

    [mm] $\lim (f(x_0) \pm f(\frac{1}{x}))$ [/mm]

fehlt aber etwas: Da soll ja $x' [mm] \to \infty$ [/mm] laufen gelassen werden, und dann
gehört da auch [mm] $f(1/x\red{\,'\,})$ [/mm] hin!

Das Ganze ist deswegen etwas *unglücklich*, weil Du bei der Substitution
[mm] $x'=1/(x-x_0)$ [/mm] danach quasi davon ausgehst, dass $x [mm] \to x_0$ [/mm] gleichbedeutend
mit $x' [mm] \to \infty$ [/mm] oder $x' [mm] \to -\infty$ [/mm] ist. Was machst Du aber, wenn ich mich
etwa mit [mm] $x_n=x_0+(-1)^n*1/n$ [/mm] an [mm] $x_0$ [/mm] annähere? Das kann man beheben,
aber dann muss man formal ein wenig aufpassen.

> Und daraus folgt die Behauptung, dass [mm]f[/mm] auf ganz [mm]\mathbb{R}[/mm]
> stetig ist.
>
> Ist das richtig argumentiert oder darf ich diese
> Substitution nicht machen?

S.o., man kann sowas ähnlich aufschreiben, müßte dann aber $|x'| [mm] \to \infty$ [/mm] laufen
lassen und und und.

Ich frage mich aber, ehrlich gesagt, warum Du es Dir so schwer machst?
Du brauchst die Substitution doch eigentlich gar nicht:
Sei [mm] $x_0 \not=0\,.$ [/mm] Dann gilt

    [mm] $\lim_{x \to x_0}f(x)=\lim_{x \to x_0}f(x-x_0+x_0)=\lim_{x \to x_0}\{f(x-x_0)+\underbrace{f(x_0)}_{\text{ unabhg. von }x}\}=f(x_0)+\lim_{x \to x_0}f(x-x_0)\,.$ [/mm]

Sei [mm] $d=d_{x_0}(x):=x-x_0\,$ [/mm] (nicht notwendig $d > 0$!). Dann gilt

    $x [mm] \to x_0$ $\iff$ [/mm] $d [mm] \to [/mm] 0$

und daher

    [mm] $\lim_{x \to x_0}f(x)=f(x_0)+\lim_{d \to 0}f(d)\,.$ [/mm]

Den Rest bekommst Du hin!

Nur nochmal als Hinweis: Bei $d [mm] \to [/mm] 0$ darf das Vorzeichen von [mm] $d\,$ [/mm] beim "Nullzulauf"
variieren, wie es will, das interessiert keinen. Leider liefert $0 [mm] \not=d \to [/mm] 0$ weder

    $1/d [mm] \to \infty$ [/mm] noch $1/d [mm] \to -\infty\,,$ [/mm]

sondern nur $|1/d| [mm] \to \infty$. [/mm]

Modifiziert man Deine Variante etwas, so kann man mit ihr die Rechtsstetigkeit
in [mm] $x_0$ [/mm] und auch die Linksstetigkeit in [mm] $x_0$ [/mm] zeigen. Packt man das zusammen,
so hat man damit dann auch die Stetigkeit gezeigt. Aber in Deinem Aufschrieb
oben gibt's halt - wenn man es genau liest - ein paar Stellen, die man so
nicht schreiben kann!

P.S. Es gibt übrigens noch eine Alternative:

    [mm] $|f(x_0)-\lim_{x \to x_0}f(x)|=|f(x_0)-\lim_{h \to 0} f(x_0+h)|=...=|\lim_{h \to 0}f(h)|$ [/mm]

Beachte übrigens: Bei [mm] $\lim_{h \to 0}...$ [/mm] ist immer $0 [mm] \not=h$ [/mm] gemeint!

Gruß,
  Marcel

Bezug
                
Bezug
Wenn in 0 steig, ganz stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 Mi 17.12.2014
Autor: duduknow

Hi,

vielen Dank für deine Antwort. Das hat mir sehr geholfen.

Bezug
                        
Bezug
Wenn in 0 steig, ganz stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Do 18.12.2014
Autor: Marcel

Hi,

> Hi,
>  
> vielen Dank für deine Antwort. Das hat mir sehr geholfen.  

gerne. :-)

Gruß,
  Marcel

Bezug
        
Bezug
Wenn in 0 steig, ganz stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Do 18.12.2014
Autor: fred97

Hallo duduknow,

do you know

Satz: Die Funktion $ [mm] f:\mathbb{R} \rightarrow \mathbb{R} [/mm] $ habe die Eigenschaft $ f(x + y) = f(x) + f(y) $ für alle $x,y [mm] \in \IR$. [/mm]
Dann sind die folgenden Aussagen äquivalent:

(1) f ist in 0 stetig;

(2) f ist auf [mm] \IR [/mm] stetig;

(3) $f(x)=f(1)*x$   für alle [mm] $x\in \IR$. [/mm]

Beweis: (1) [mm] \Rightarrow [/mm] (2) ist erledigt. (3) [mm] \Rightarrow [/mm] (1) ist klar.

Den Beweis für  (2) [mm] \Rightarrow [/mm] (3) versuche mal selbst.

FRED

Bezug
                
Bezug
Wenn in 0 steig, ganz stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:27 So 21.12.2014
Autor: duduknow

Hallo fred97,

ich habe deine leider Antwort erst jetzt gesehen. :( Danke dafür!

Eine aktuelle Übungsaufgabe ist es, zu zeigen, dass stetige Funktionen, die auf [mm] $\mathbb{Q}$ [/mm] übereinstimmen, auch auf [mm] $\mathbb{R}$ [/mm] übereinstimmen. Daraus folgt (2) => (3) nach:

Das stimmt für alle $x [mm] \in \mathbb{Q}$, [/mm] denn:

1) $0 = f(1 - 1) = f(1) + f(-1) [mm] \Leftrightarrow [/mm] f(-1) = -f(1)$

2) $f(x) = [mm] f(\frac{q}{q}\cdot [/mm] 1) = [mm] q\cdot f(\frac{1}{q}\cdot [/mm] 1) [mm] \Leftrightarrow \frac{1}{q} \cdot [/mm] f(1) = [mm] f(\frac{1}{q}\cdot [/mm] 1)$ [mm] $\forall [/mm] q [mm] \in \mathbb{N}$ [/mm]

3) [mm] $f(p\cdot [/mm] 1) = [mm] p\cdot [/mm] f(1)$ [mm] $\forall [/mm] p [mm] \in \mathbb{N}$, [/mm] und mit 1) sowie $f(0) = 0$ also auch für alle $p [mm] \in \mathbb{Z}$ [/mm]

Also gilt die Aussage für alle [mm] $\frac{p}{q} [/mm] = x [mm] \in \mathbb{Q}$. [/mm]


(2) => (3) folgt nun mit der Übungsaufgabe:

Sei also [mm] $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ [/mm] und [mm] $x_k \in \mathbb{Q}$ [/mm] eine Folge mit [mm] $x_k \rightarrow x_0$. [/mm]

Dann gilt [mm] $f(x_k) [/mm] = [mm] f(1)\cdot x_k$ $\forall [/mm] k$, und weil $f$ stetig muss [mm] $\lim_{k \rightarrow \infty} f(x_k) [/mm] = [mm] f(x_0)$. [/mm] Da der Grenzwert eindeutig ist muss [mm] $f(x_0) [/mm] = [mm] f(1)\cdot x_0$. [/mm]

Stimmt das so?

Bezug
                        
Bezug
Wenn in 0 steig, ganz stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 So 21.12.2014
Autor: fred97


> Hallo fred97,
>  
> ich habe deine leider Antwort erst jetzt gesehen. :( Danke
> dafür!
>  
> Eine aktuelle Übungsaufgabe ist es, zu zeigen, dass
> stetige Funktionen, die auf [mm]\mathbb{Q}[/mm] übereinstimmen,
> auch auf [mm]\mathbb{R}[/mm] übereinstimmen. Daraus folgt (2) =>
> (3) nach:
>  
> Das stimmt für alle [mm]x \in \mathbb{Q}[/mm], denn:
>  
> 1) [mm]0 = f(1 - 1) = f(1) + f(-1) \Leftrightarrow f(-1) = -f(1)[/mm]
>  
> 2) [mm]f(x) = f(\frac{q}{q}\cdot 1) = q\cdot f(\frac{1}{q}\cdot 1) \Leftrightarrow \frac{1}{q} \cdot f(1) = f(\frac{1}{q}\cdot 1)[/mm]
> [mm]\forall q \in \mathbb{N}[/mm]



Ganz links sollte f(1) stehen.


>  
> 3) [mm]f(p\cdot 1) = p\cdot f(1)[/mm] [mm]\forall p \in \mathbb{N}[/mm], und
> mit 1) sowie [mm]f(0) = 0[/mm] also auch für alle [mm]p \in \mathbb{Z}[/mm]
>  
> Also gilt die Aussage für alle [mm]\frac{p}{q} = x \in \mathbb{Q}[/mm].
>  
>
> (2) => (3) folgt nun mit der Übungsaufgabe:
>  
> Sei also [mm]x_0 \in \mathbb{R} \setminus \mathbb{Q}[/mm] und [mm]x_k \in \mathbb{Q}[/mm]
> eine Folge mit [mm]x_k \rightarrow x_0[/mm].
>
> Dann gilt [mm]f(x_k) = f(1)\cdot x_k[/mm] [mm]\forall k[/mm], und weil [mm]f[/mm]
> stetig muss [mm]\lim_{k \rightarrow \infty} f(x_k) = f(x_0)[/mm]. Da
> der Grenzwert eindeutig ist muss [mm]f(x_0) = f(1)\cdot x_0[/mm].
>
> Stimmt das so?  

Ja

FRED


Bezug
                                
Bezug
Wenn in 0 steig, ganz stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 So 21.12.2014
Autor: duduknow

Danke für die Korrektur.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]