www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Wegintegrale
Wegintegrale < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wegintegrale: Korrektur
Status: (Frage) für Interessierte Status 
Datum: 18:23 Di 03.12.2013
Autor: SaskiaCl

Aufgabe
Bestimme die Wegintegrale
[mm] a)\integral_{|z-1|=3}{\bruch{sin(z)}{((z+\pi)(z-\pi/2)} dz} [/mm]
[mm] b)\bruch{1}{2*\pi*i}*\integral_{|x|=1}{\bruch{1/x}{x-z} dx} [/mm]

Guten Tag,
ich fühle mich noch sehr unsicher auf diesen gebiet und würde euch bitten einmal zu schauen ob meine Lösungen so richtig sind.

a)Cauchy Integralformel mit  mit [mm] f(z)=\bruch{sin(z)}{((z--\pi)} [/mm] anwedbar da holomorph in [mm] U=\IC\backslash \{-\pi\} [/mm] und [mm] \{|z-1|=3\}\subset [/mm] U

[mm] \integral_{|z-1|=3}{\bruch{sin(z)}{((z+\pi)(z-\pi/2)} dz}=\integral_{|z-1|=3}{\bruch{f(z)}{(z-\pi/2)} dz}=2*\pi*f(\pi/2)=4 [/mm]

b)
[mm] \bruch{1}{2*\pi*i}*\integral_{|x|=1}{\bruch{1/x}{x-z} dx}= [/mm]
[mm] \bruch{1}{2*\pi*i}*\integral_{0}^{2*\pi}{\bruch{e^{-i*t}}{e^{i*t}-z} *e^{i*t}*i*\pi dt}= \bruch{1}{2*\pi*i}*\integral_{0}^{2*\pi}{\bruch{*i*\pi}{e^{i*t}-z} dt}= \bruch{1}{2}*\integral_{0}^{2*\pi}{\bruch{1}{e^{-*t}-z} dt}= \bruch{1}{2}*(-ln(e^{i*2*\pi}-z)--ln(e^{i*0}-z))=0 [/mm]

Danke

        
Bezug
Wegintegrale: Doppelposting
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Di 03.12.2013
Autor: Diophant

Hallo SaskiaCL,

bitte stelle jede Frage hier nur einmal. Dies ist ein Doppelposting, hier geht es weiter!

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]