www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Mo 07.06.2004
Autor: Darvin

Hallo,

Eine Firma erhält regelmäßig Bauteile, von denen der Hersteller behauptet, daß höchstens 5 % defekt sind. Es werden 40 Bauteile geliefert !

a) Wie viele Ausschussstücke sind zu erwarten ?
- das war kein Thema es sind 2

b) Mit welcher Wahrscheinlichkeit sind in der Lieferung mehr Ausschußstücke als erwartet ?

Bei b) habe ich echte Schwierigkeiten da ich das Ergebnis 32,33 % zwar mit der Poisson und der Binominalverteilung nachweisen kann aber nicht mit dem mulitplikations oder additionssatz die in der Aufgabe verlangt werden.

mein Ansatz war:
P(X>2) =  1- P(X< = 2 )
1- ((40/38)*(39/37)*(38/36))  

gruss


        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 07.06.2004
Autor: Julius

Hallo Darvin!

> Eine Firma erhält regelmäßig Bauteile, von denen der
> Hersteller behauptet, daß höchstens 5 % defekt sind. Es
> werden 40 Bauteile geliefert !
>  
> a) Wie viele Ausschussstücke sind zu erwarten ?
>  - das war kein Thema es sind 2

[ok]
  

> b) Mit welcher Wahrscheinlichkeit sind in der Lieferung
> mehr Ausschußstücke als erwartet ?
>  
> Bei b) habe ich echte Schwierigkeiten da ich das Ergebnis
> 32,33 % zwar mit der Poisson und der Binominalverteilung
> nachweisen kann aber nicht mit dem mulitplikations oder
> additionssatz die in der Aufgabe verlangt werden.
>
> mein Ansatz war:
>  P(X>2) =  1- P(X< = 2 )
>  1- ((40/38)*(39/37)*(38/36))  

Der grundsätzliche Ansatz ist ja richtig, aber wie kommst du auf die Zahlen?

Richtig muss es so lauten:

$P(X>2)$

$= 1 - P(X [mm] \le [/mm] 2)$

$= 1 - (P(X=0) + P(X=1) + P(X=2))$

$= 1 - [mm] \left(\frac{38}{40}\right)^{40} [/mm] - 40 [mm] \cdot \left( \frac{38}{40} \right)^{39} \cdot \frac{2}{40} [/mm] - [mm] \frac{40 \cdot 39}{2} \cdot \left( \frac{38}{40} \right)^{38} \cdot \left( \frac{2}{40} \right)^2$ [/mm]

$= [mm] \ldots$. [/mm]

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]