www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeiten-Roulette
Wahrscheinlichkeiten-Roulette < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten-Roulette: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 15.10.2005
Autor: muklug

hallo an Alle,
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)
ich muss folgende aufgabe lösen, habe aber in der wahrscheinlichkeitstheorie leider so gut wie kein vorwissen
Ich befürchte dass meine lösungsansätze/ergebnisse nicht wirklich korrekt sind...bitte um hilfe!

Ein spieler setzt beim Roulette immer auf Pair(2,4,...36)
a)
Wahrscheinlichkeit bei 12 Spielen 4 oder 5 mal erfolg zu haben:

genau 4 gewinnen und genau 8 verlieren -> 12 spiele:  ( [mm] \bruch{18}{37} [/mm] ) ^4 +  ( [mm] \bruch{19}{37} [/mm] ) ^8 = 0,0608
oder
genau 5 gewinnen und genau 7 verlieren -> 12 spiele:  ( [mm] \bruch{18}{37} [/mm] ) ^5 +  ( [mm] \bruch{19}{37} [/mm] ) ^7 =0,0366
0,0608*0,0366 = 0,00222

b)
Wahrscheinlichkeit beim k-ten spiel ersten erfolg zu haben für k=1,2,3,4

1- ( [mm] \bruch{19}{37} [/mm] ) ^k  

c)
einsatzlimit = 400€, start mit 1€, bei jedem verlust verdoppeln, bei gewinn aufhören.
wie  hoch ist die wahrscheinlichkeit ohne gewinn wegen überschreitung des limits aufzuhören?

Anzahl der Spiele: einsatz: 1,2,4,8,...256 -> 9 spiele bis limit überschritten
( [mm] \bruch{19}{37} [/mm] ) ^9

mfg,
Philip


        
Bezug
Wahrscheinlichkeiten-Roulette: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Sa 15.10.2005
Autor: Stefan

Hallo Philip!

> Ein spieler setzt beim Roulette immer auf Pair(2,4,...36)
>  a)
>  Wahrscheinlichkeit bei 12 Spielen 4 oder 5 mal erfolg zu
> haben:
>  
> genau 4 gewinnen und genau 8 verlieren -> 12 spiele:  (
> [mm]\bruch{18}{37}[/mm] ) ^4 +  ( [mm]\bruch{19}{37}[/mm] ) ^8 = 0,0608

[notok]

Hier musst du mit der Binomialverteilung arbeiten. Die richtige Antwort lautet:

$p= {12 [mm] \choose [/mm] 4} [mm] \left( \frac{18}{37}\right)^4 \cdot \left( \frac{19}{37} \right)^8$. [/mm]

>  oder
>  genau 5 gewinnen und genau 7 verlieren -> 12 spiele:  (

> [mm]\bruch{18}{37}[/mm] ) ^5 +  ( [mm]\bruch{19}{37}[/mm] ) ^7 =0,0366
>  0,0608*0,0366 = 0,00222

[notok]

Hier lautet es entsprechend  

$p= {12 [mm] \choose [/mm] 5} [mm] \left( \frac{18}{37}\right)^5 \cdot \left( \frac{19}{37} \right)^7$. [/mm]

> b)
>  Wahrscheinlichkeit beim k-ten spiel ersten erfolg zu haben
> für k=1,2,3,4
>  
> 1- ( [mm]\bruch{19}{37}[/mm] ) ^k  

[notok]

Hier musst du mit der geometrischen Verteilung arbeiten. Du hast die ersten $k-1$-ten Male Misserfolg und dann erfolg. Daher lautet die Wahrscheinlichkeit

$p = [mm] \left( \frac{19}{37} \right)^{k-1} \cdot \frac{18}{37}$. [/mm]

> c)
>  einsatzlimit = 400€, start mit 1€, bei jedem
> verlust verdoppeln, bei gewinn aufhören.
>  wie  hoch ist die wahrscheinlichkeit ohne gewinn wegen
> überschreitung des limits aufzuhören?
>  
> Anzahl der Spiele: einsatz: 1,2,4,8,...256 -> 9 spiele bis
> limit überschritten
>  ( [mm]\bruch{19}{37}[/mm] ) ^9

[ok]

Anschließend würde die Verdoppelung zu einer Überschreitung des Einsatzlimits führen.

Liebe Grüße
Stefan  


Bezug
        
Bezug
Wahrscheinlichkeiten-Roulette: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Sa 15.10.2005
Autor: muklug

Hallo Stefan,

VIELEN DANK für deine Hilfe!!

ich werde mir das mit der binomial bzw. geometrischen verteilung nochmal überlegen....

mfg
philip

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]