www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mi 01.12.2010
Autor: melanieT.

Aufgabe
In einer Urne befinden sich 5 schwarze,3 weiße und 2 rote Kugeln.Es werden nacheinander vier Kugeln entnommen,die Reihenfolge bleibt unberücksichtigt.
(a)Wieviele verschiedene Ziehungsergebnisse sind möglich,wenn die gezogenen Kugeln nicht zurückgelegt werden?
(b)Welche Anzahl ergibt sich,wenn die Kugeln zurückgelegt werden?

Hey Leute,

Also ich wüsste jetzt bei der (a) wohl wie ich die einzelnen Ziehergebnisse auflisten könnte,aber dann müsste ich sie alle einzeln aufzählen.Ist das denn Sinn der Aufgabe?Sollte man die nicht auch berechnen können?
Ich hätte dann sowas wie:
(s,s,s,s),(s,s,s,w),(s,s,s,r)(s,s,w,r),(s,s,w,w)(s,s,r,r)(s,w,w,w)(s,w,w,r)(s,w,r,r)(w,w,w,r)(w,w,r,r)
das müssten doch alle sein oder?dann wären wir bei 11 aber wie berechnet man das?Kann man dann diese Formel in Gebrauch [mm] nehmen:\vektor{n \\ k} =\bruch{n!}{ k!*(n-k)!}?Wenn [/mm] ja,wie genau setz ich das dann ein?
Danke für Hilfe!!

Viele Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mi 01.12.2010
Autor: wauwau

ohne Zurücklegen:

[mm] \summe_{s=0}^{4}( \summe_{w=0_{2 \le w+s\le4}}^{3}1) [/mm]

mit Zurücklegen

[mm] \summe_{s=0}^{4} \summe_{w=0}^{4-s} \summe_{w=0}^{4-s-w}1 [/mm]

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Mi 01.12.2010
Autor: melanieT.

Hallo,

danke für die Antwort.Ich versuch grad ihre Formel zu verstehen aber das fällt mir nicht so leicht.Wenn:
$ [mm] \summe_{s=0}^{4}( \summe_{w=0_{2 \le w+s\le4}}^{3}1) [/mm] $=2
dann wären das doch 2 weil man ja [mm] 2\le0+0\le4 [/mm] das ist falsch also 0 und dann [mm] noch:2\le1+1\le4 [/mm] also 1 und [mm] 2\le2+2\le4 [/mm] auch 1.also zusammen 2...ich versteh das nicht:(....

Lieben Gruß

Bezug
                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Mi 01.12.2010
Autor: melanieT.

kann mir keiner Helfen???:(

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Do 02.12.2010
Autor: Sigma


> Hallo,
>  
> danke für die Antwort.Ich versuch grad ihre Formel zu
> verstehen aber das fällt mir nicht so leicht.Wenn:
>  [mm]\summe_{s=0}^{4}( \summe_{w=0_{2 \le w+s\le4}}^{3}1) [/mm]=2
>  
> dann wären das doch 2 weil man ja [mm]2\le0+0\le4[/mm] das ist
> falsch also 0 und dann [mm]noch:2\le1+1\le4[/mm] also 1 und
> [mm]2\le2+2\le4[/mm] auch 1.also zusammen 2...ich versteh das
> nicht:(....
>  
> Lieben Gruß

Kannte ich auch noch nicht, diese Art der Summendarstellung. Aber so sieht das ganze mathematisch viel schöner aus.

[mm]\summe_{s=0}^{4}(\underset{2 \le w+s\le4}{\summe_{w=0}^{3}}1)=(\underbrace{1+1}_{s=0})+(\underbrace{1+1+1}_{s=1})+(\underbrace{1+1+1}_{s=2})+(\underbrace{1+1}_{s=3})+(\underbrace{1}_{s=4})=11 [/mm]

Siehe da, die Lösung von melanieT stimmt.


Bezug
                                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Do 02.12.2010
Autor: melanieT.

Hallo Sigma,

danke erstmal.ok,das zu der Aufgabe a) hab ich verstanden aber mit der b) und dem Summenzeichen komm ich nicht wirklich zurecht.Kann man die Aufgabe nicht auch irgendwie anders lösen ohne dieses Summenzeichen?

Liebe Grüße

Bezug
                                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 02.12.2010
Autor: wauwau

Wählen mit Zurücklegen kannst du auch mit binomialkoeffizienten ausdrücken

du hast k Farben und ziehst n mal mit zurücklegen, dann gibt es ohne berücksichtigung der Reienfolge

[mm] \vektor{n+k-1\\n} [/mm] Möglichkeiten

Bezug
                
Bezug
Wahrscheinlichkeit: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 10:18 Do 02.12.2010
Autor: Sigma


> ohne Zurücklegen:
>  
> [mm]\summe_{s=0}^{4}( \summe_{w=0_{2 \le w+s\le4}}^{3}1)[/mm]
>  

[ok], stimmt.

> mit Zurücklegen
>  
> [mm]\summe_{s=0}^{4} \summe_{w=0}^{4-s} \summe_{w=0}^{4-s-w}1[/mm]  

[notok], muss es nicht eher [mm]\summe_{s=0}^{4} \summe_{w=0}^{4-s}1=15[/mm] lauten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]