Volumen einer Menge? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Volumen der Menge X:={ (x,y) | [mm] x+y\le1 [/mm] } und Y:={ [mm] (x,y)|x^2+xy+y^2\le1 [/mm] }
|
Hallo
Bekannt ist, dass man , wenn man das Integral einer einfachen Menge S berechnen will, folgendes gilt:
[mm] \integral_{S}^{}{1}
[/mm]
Bei einer Menge mit der Bedingung : [mm] x^2+y^2\le1 [/mm] 1 kann man die Menge als Funktion [mm] f:[0,R]x[0,2\pi] \to \IR^{2} [/mm] , [mm] \pmat{ r \\ t }\mapsto \pmat{ r*cos(t) \\ r*sin(t) }
[/mm]
Mit der Funktionaldeterminante kann man dann das Integral berechnen indem man die [mm] Integrationsgrenzen:[0,R]x[0,2\pi] [/mm] benutzt und als Funktion f(x) die Funktionaldeterminante.
Das Volumen bzw. der Flächeninhalt von X müsste ja [mm] \bruch{1}{2} [/mm] sein.
Nun habe ich versucht, [mm] u^{2}=x [/mm] und [mm] v^{2}=y [/mm] zu setzen, sodass die Bedinung: [mm] u^{2}+v^{2}\le1 [/mm] 1 gilt.
dann kann man die funktion [mm] f(\pmat{ r \\ t })=\pmat{ u \\ v } [/mm] setzen, und da [mm] u^{2}=x [/mm] und [mm] v^{2}=y [/mm] gilt, kann man schreiben:
[mm] \pmat{ (r*cos(t))^{2} \\ (r*sin(t))^{2} } =\pmat{ x \\ y }
[/mm]
Wenn man nun aber die Funktionaldeterminante berechnet und dann das Integral berechnet, kommt man nicht auf [mm] \bruch{1}{2}.
[/mm]
Weiß jemand, wo der Fehler liegen könnte?
Mir ist klar, dass das bei der Menge X eig sehr einfach zu lösen ist, aber z.b bei der Menge Y ist das ja schwerer, wobei man es aber auch leicht in
[mm] u^{2}+v^{2}\le [/mm] c schrieben könnte, wodurch man wieder Polarkoordinaten benutzen könnte.
|
|
|
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo Super-Mario-123,
> Volumen der Menge X:={ (x,y) | [mm]x+y\le1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
} und Y:={
> [mm](x,y)|x^2+xy+y^2\le1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
}
>
> Hallo
> Bekannt ist, dass man , wenn man das Integral einer
> einfachen Menge S berechnen will, folgendes gilt:
> [mm]\integral_{S}^{}{1}[/mm]
> Bei einer Menge mit der Bedingung : [mm]x^2+y^2\le1[/mm] 1 kann man
> die Menge als Funktion [mm]f:[0,R]x[0,2\pi] \to \IR^{2}[/mm] ,
> [mm]\pmat{ r \\ t }\mapsto \pmat{ r*cos(t) \\ r*sin(t) }[/mm]
> Mit
> der Funktionaldeterminante kann man dann das Integral
> berechnen indem man die [mm]Integrationsgrenzen:[0,R]x[0,2\pi][/mm]
> benutzt und als Funktion f(x) die Funktionaldeterminante.
> Das Volumen bzw. der Flächeninhalt von X müsste ja
> [mm]\bruch{1}{2}[/mm] sein.
Das stimmt, wenn [mm]x,y\in \IR_{0}^{+}[/mm]
> Nun habe ich versucht, [mm]u^{2}=x[/mm] und [mm]v^{2}=y[/mm] zu setzen,
> sodass die Bedinung: [mm]u^{2}+v^{2}\le1[/mm] 1 gilt.
> dann kann man die funktion [mm]f(\pmat{ r \\ t })=\pmat{ u \\ v }[/mm]
> setzen, und da [mm]u^{2}=x[/mm] und [mm]v^{2}=y[/mm] gilt, kann man
> schreiben:
> [mm]\pmat{ (r*cos(t))^{2} \\ (r*sin(t))^{2} } =\pmat{ x \\ y }[/mm]
>
> Wenn man nun aber die Funktionaldeterminante berechnet und
> dann das Integral berechnet, kommt man nicht auf
> [mm]\bruch{1}{2}.[/mm]
>
> Weiß jemand, wo der Fehler liegen könnte?
Dazu benötigen wir den Weg, wie Du die Funktionaldeterminante
bzw. das Integral berechnet hast.
> Mir ist klar, dass das bei der Menge X eig sehr einfach zu
> lösen ist, aber z.b bei der Menge Y ist das ja schwerer,
> wobei man es aber auch leicht in
> [mm]u^{2}+v^{2}\le[/mm] c schrieben könnte, wodurch man wieder
> Polarkoordinaten benutzen könnte.
>
Gruss
MathePower
|
|
|
|
|
Hallo Antonio,
ergänzend:
> Volumen der Menge [mm] $X:=\{ (x,y) | x+y\le 1 \}$ [/mm] und [mm] $Y:=\{(x,y)|x^2+xy+y^2\le 1\}
[/mm]
>
> Hallo
> Bekannt ist, dass man , wenn man das Integral einer
> einfachen Menge S berechnen will, folgendes gilt:
> [mm]\integral_{S}^{}{1}[/mm]
> Bei einer Menge mit der Bedingung : [mm]x^2+y^2\le1[/mm] 1 kann man
> die Menge als Funktion [mm]f:[0,R]x[0,2\pi] \to \IR^{2}[/mm] ,
> [mm]\pmat{ r \\ t }\mapsto \pmat{ r*cos(t) \\ r*sin(t) }[/mm]
> Mit
> der Funktionaldeterminante kann man dann das Integral
> berechnen indem man die [mm]Integrationsgrenzen:[0,R]x[0,2\pi][/mm]
> benutzt und als Funktion f(x) die Funktionaldeterminante.
> Das Volumen bzw. der Flächeninhalt von X müsste ja
> [mm]\bruch{1}{2}[/mm] sein.
> Nun habe ich versucht, [mm]u^{2}=x[/mm] und [mm]v^{2}=y[/mm] zu setzen,
> sodass die Bedinung: [mm]u^{2}+v^{2}\le1[/mm] 1 gilt.
> dann kann man die funktion [mm]f(\pmat{ r \\ t })=\pmat{ u \\ v }[/mm]
> setzen, und da [mm]u^{2}=x[/mm] und [mm]v^{2}=y[/mm] gilt, kann man
> schreiben:
> [mm]\pmat{ (r*cos(t))^{2} \\ (r*sin(t))^{2} } =\pmat{ x \\ y }[/mm]
>
> Wenn man nun aber die Funktionaldeterminante berechnet und
> dann das Integral berechnet, kommt man nicht auf
> [mm]\bruch{1}{2}.[/mm]
>
Wie oben mit [mm] $x,y\ge [/mm] 0$ brauchst du überhaupt keine Transformation.
Du kannst das Volumen geradeheraus berechnen.
Die Menge $X$ beschreibt (mit der Zusatzforderung [mm] $x,y\ge [/mm] 0$) ein Dreieck mit den Eckpunkten $(0,0), (0,1), (1,0)$
Mal's dir mal auf.
Dann siehst du direkt ein, dass du die Intervallgrenzen wie folgt wählen kannst:
$x$ läuft von $0$ bis $1$ und $y$ läuft für festes x zwischen 0 und 1-x [mm] (x+y\le [/mm] 1)
Also berechne [mm] $\int\limits_{x=0}^{x=1} [/mm] \ [mm] \int\limits_{y=0}^{y=1-x} [/mm] \ {1 \ dydx}$
Damit kommst du auf das gewünschte [mm] $\frac{1}{2}$ [/mm] (was ja auch dem geometrischen Ergebnis als Flächeninhalt des o.b. Dreiecks entspricht)
Gruß
schachuzipus
|
|
|
|