www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Volumen des Paraboloids
Volumen des Paraboloids < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen des Paraboloids: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:00 Sa 02.12.2006
Autor: Brumm

Aufgabe
Berechne das Volumen eines Paraboloids
P = [mm] \{ (x,y,z) \in \IR^3 : x \in [0,h] \mbox{ und } y^2 + z^2 \le \bruch{r^2 x}{h} \} [/mm]
(r,h > 0)

Hallo !

Ich weiß, dass die Lösung [mm] $\bruch{1}{2} \pi r^2 [/mm] h$ ist.
Wir hatten zuletzt das Cavalierische Prinzip und den Satz von Fubini. Ich denke also, dass ich mit den beiden weiter kommen müsste, die Frage ist nur wie.
Über Hilfe wäre ich dankbar.

Brumm

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Volumen des Paraboloids: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:42 Sa 02.12.2006
Autor: Brumm

Ich habe jetzt versucht über 1 zu integrieren mit Integrationsgrenzen
[mm] $-\sqrt{r^2 + z^2} [/mm] < y < [mm] \sqrt{r^2 + z^2}$, $-\sqrt{r^2 + y^2} [/mm] < z < [mm] \sqrt{r^2 + y^2}$ [/mm] und $ 0 < x < h$
Dies führt allerdings nicht zum gewünschten Ergebnis :(
Wie soll ich die Integralgrenzen sonst setzen?

Brumm

Bezug
        
Bezug
Volumen des Paraboloids: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 So 03.12.2006
Autor: Leopold_Gast

Betrachte in einem [mm]xz[/mm]-Koordinatensystem die Parabel mit der Gleichung [mm]x = \frac{h}{r^2} z^2[/mm]. Nach [mm]z[/mm] aufgelöst, bekommt man für den oberen Ast:

[mm]z = r \, \sqrt{\frac{x}{h}}[/mm]

[Dateianhang nicht öffentlich]

Wenn nun dieser Ast um die [mm]x[/mm]-Achse rotiert, bekommt man das beschriebene Paraboloid (die [mm]y[/mm]-Achse muß man sich senkrecht zur Bildschirmebene in den Bildschirm hinein gerichtet denken). Denn bei der Stelle [mm]x \in [0,h][/mm] wird aus dem Paraboloid ein Kreis mit dem Radius

[mm]\rho = r \, \sqrt{\frac{x}{h}}[/mm]

ausgeschnitten. Und für alle Punkte dieser Kreisscheibe gilt: [mm]y^2 + z^2 \leq \rho^2[/mm], also [mm]y^2 + z^2 \leq \frac{r^2 x}{h}[/mm].

Du kannst also die aus der Schule bekannte Formel für Rotationskörper verwenden und erhältst für das Volumen

[mm]V = \pi \int_0^h~z^2~\mathrm{d}x[/mm]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]