www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 20.04.2011
Autor: Mandy_90

Aufgabe
Man beweise folgende Ungleichung für beliebige x [mm] \in \IR, [/mm] x [mm] \ge0, [/mm] n [mm] \in \IN: [/mm]

a) 1+nx [mm] \le (1+x)^{n} [/mm]
b) [mm] \bruch{n*(n-1)}{2}*x^{2} \le (1+x)^{n}. [/mm]

Hallo zusammen^^

Die a) habe ich schon bewiesen mit vollständiger Induktion.Bei der b) komme ich leider nicht mehr weiter.

IA:n=1: 0 [mm] \le [/mm] 1+x. Das gilt immer, da x eine positive Zahl ist.

IV: Beh. gilt für n.

IS: n --> n+1
zz: [mm] \bruch{(n+1)*(n+1-1)}{2}*x^{2} \le (1+x)^{n+1}, [/mm] d.h

[mm] \bruch{n*(n+1)}{2}*x^{2} \le (1+x)*(1+x)^{n}. [/mm]

Jetzt ist nach IV [mm] (1+x)^{n} \ge \bruch{n*(n-1)}{2}*x^{2}. [/mm]
Auf der linken Seite habe ich versucht den Term für n auszuklammern,da steht dann [mm] 0.5*(n+1)(n-1+1)*x^{2}=0.5*(n+1)*((n+1)x^{2}+x^{2}).Aber [/mm] weiter klappt das nicht so wirklich.

Ich hatte noch eine andere Idee. Unzwar hab ich in a) gezeigt, dass 1+nx [mm] \le (1+x)^{n}. [/mm] Dann habe ich versucht zu beweisen, dass 1+nx [mm] \ge \bruch{n*(n-1)}{2}*x^{2} [/mm] und habe in dem IS folgendes: [mm] \bruch{n}{2}*x^{2} \le \bruch{1}{n+1}*x. [/mm] Für den Fall x=0 gilt die Ungleichung. Nehmen wir also an x ist nicht =0.Dann habe ich durch x geteilt aber das ergibt keinen Sinn mehr.

Sind meine Ansätze brauchbar und hat jemand einen Tipp wie ich weitermachen kann?

Vielen Dank
lg

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mi 20.04.2011
Autor: reverend

Hallo Mandy,

falsche Methode. Hier kommst Du mit vollständiger Induktion vor allem in Schwierigkeiten.

Ganz einfach aber ist hier der binomische Lehrsatz. Betrachte auf der rechten Seite mal den Summanden mit [mm] x^2. [/mm]

Und, klingelts?

Du wirst feststellen, dass Du auf der linken Seite sogar noch 1+nx dazuaddieren kannst und die Ungleichung immer noch stimmt. Bernoulli de luxe.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]