www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Viereck & Quader
Viereck & Quader < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Viereck & Quader: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 So 10.06.2007
Autor: Hume

Aufgabe 1
  Berechne im Viereck $ABCD$ die Seitenlängen und die Größen der Innenwinkel!

$A(-1|-3), B(6|-2), C(2|1), D(3|-6)$


Aufgabe 2
Ein Quader hat die Kantenlänge 6cm, 6cm und 3cm.

a) Berechne die Größen der Winkel zwischen je zwei Raumdiagonalen!
b) Berechne die Größen der Winkel zwischen einer Raumdiagonalen und den drei Kanten des Quaders!

Zu 1: Zunächst habe ich eine Skizze gemacht und bin dann wie folgt vorgegangen:

[mm] \overrightarrow{AB} [/mm] = [mm] \overrightarrow{OB} [/mm] - [mm] \overrightarrow{OA}=\vektor{7 \\ 1} [/mm]
[mm] \overrightarrow{BC} [/mm] = [mm] \overrightarrow{OC} [/mm] - [mm] \overrightarrow{OB}=\vektor{-4 \\ 3} [/mm]
[mm] \overrightarrow{CD} [/mm] = [mm] \overrightarrow{OD} [/mm] - [mm] \overrightarrow{OC}=\vektor{1 \\ -7} [/mm]
[mm] \overrightarrow{AD} [/mm] = [mm] \overrightarrow{OD} [/mm] - [mm] \overrightarrow{OA}=\vektor{4 \\ -3} [/mm]

[mm] $|\overrightarrow{AB}|=\wurzel{7^2+1^2}=5 [/mm] * [mm] \wurzel{2}$ [/mm]
[mm] $|\overrightarrow{CD}|=\wurzel{1^2+(-7)^2}=5 [/mm] * [mm] \wurzel{2}$ [/mm]
[mm] $|\overrightarrow{BC}|=5 [/mm] $
[mm] $|\overrightarrow{AD}|=\wurzel{4^2+(-3)^2}=5$ [/mm]

$ [mm] \alpha [/mm] = [mm] cos^{-1}(\bruch{28-3}{5 * \wurzel{2} *5)}=45° [/mm] $

$ [mm] \beta [/mm] = [mm] cos^{-1}(\bruch{-4-21}{5 * \wurzel{2} *5)}=135° [/mm] $

$ [mm] \alpha [/mm] + [mm] \beta [/mm] + [mm] \gamma [/mm] + [mm] \delta [/mm] = 360°$

Ist das erst mal richtig?

Zu 2: Da ist das ja quasi umgekehrt, die Kantenlängen sind gegeben. Aber wie komme ich von den Kantenlängen zu den Komponenten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Viereck & Quader: Vorschlag
Status: (Antwort) fertig Status 
Datum: 12:39 So 10.06.2007
Autor: Zwerglein

Hi, Hume,

> Ein Quader hat die Kantenlänge 6cm, 6cm und 3cm.
>  
> a) Berechne die Größen der Winkel zwischen je zwei
> Raumdiagonalen!
>  b) Berechne die Größen der Winkel zwischen einer
> Raumdiagonalen und den drei Kanten des Quaders!

> Zu 2: Da ist das ja quasi umgekehrt, die Kantenlängen sind
> gegeben. Aber wie komme ich von den Kantenlängen zu den
> Komponenten?

Leg' doch den Quader so ins KoSy, dass möglichst viele Ecken auf den Koordinatenachsen liegen, z.B.:

A(0;0;0)   B(6;0;0);  C(0;6;0); E(0;0;3).
Die restlichen 4 Punkte findest Du mit Hilfe der Logik (z.B. D(6;6;0), usw.)

Reicht Dir das?

mfG!
Zwerglein

Bezug
                
Bezug
Viereck & Quader: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 So 10.06.2007
Autor: Hume

Danke für den Tipp, hab jetzt [mm] $\phi [/mm] = [mm] cos^{-1}(\bruch{1}{9})=83,62°$ [/mm] raus.

- zu 2b):

zunächst habe ich eine Kante ausgerechnet:

[mm] $\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}=\vektor{6 \\ 6 \\ 0} [/mm] - [mm] \vektor{6 \\ 0 \\ 0}=\vektor{0\\ 6 \\ 0}$ [/mm]

Mit der Länge [mm] $|\overrightarrow{AB}|=6$. [/mm]

Wenn ich jetzt den Winkel zwischen einer Raumdiagonale, z.B. [mm] $\overrightarrow{AC'}=\vektor{-6 \\ 6 \\3}$ [/mm] und der Kante [mm] $\overrightarrow{AB}$ [/mm] ausrechnen will, ergibt sich am Schluss bei der Winkelberechnung immer "Error":

[mm] $\phi_2=cos^{-1}(\bruch{36}{9+6})=Error$ [/mm]

Ich finde meinen Fehler nicht - kann mir jemand helfen?

Bezug
                        
Bezug
Viereck & Quader: Falsches Rechenzeichen!
Status: (Antwort) fertig Status 
Datum: 13:10 So 10.06.2007
Autor: Zwerglein

Hi, Hume,

> Danke für den Tipp, hab jetzt [mm]\phi = cos^{-1}(\bruch{1}{9})=83,62°[/mm]
> raus.
>  
> - zu 2b):
>
> zunächst habe ich eine Kante ausgerechnet:
>  
> [mm]\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}=\vektor{6 \\ 6 \\ 0} - \vektor{6 \\ 0 \\ 0}=\vektor{0\\ 6 \\ 0}[/mm]
>  
> Mit der Länge [mm]|\overrightarrow{AB}|=6[/mm].
>  
> Wenn ich jetzt den Winkel zwischen einer Raumdiagonale,
> z.B. [mm]\overrightarrow{AC'}=\vektor{-6 \\ 6 \\3}[/mm] und der
> Kante [mm]\overrightarrow{AB}[/mm] ausrechnen will, ergibt sich am
> Schluss bei der Winkelberechnung immer "Error":
>  
> [mm]\phi_2=cos^{-1}(\bruch{36}{9+6})=Error[/mm]
>  
> Ich finde meinen Fehler nicht - kann mir jemand helfen?

Das "+" im Nenner ist falsch; es muss "*" heißen!

mfG!
Zwerglein


Bezug
                                
Bezug
Viereck & Quader: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 So 10.06.2007
Autor: Hume

Oh mann... *an die Stirn klatsch*

Danke für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]