www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - VerteilfungsFkt eines Wahr.maß
VerteilfungsFkt eines Wahr.maß < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

VerteilfungsFkt eines Wahr.maß: Frage zu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:04 So 01.05.2005
Autor: Toyo

Hallo,
wir haben gerade erstangefangen mit Verteilungsfunktionen und ich komme damit nicht so ganz klar. Unzwar verstehe ich nicht wie man, wenn man ein Wahrscheinlichkeitsmaß gegeben hat, die zugehörige Verteilungsfunktion konstruieren kann. Hätte da vielleicht jemand ein beispiel für mich, an dem er es mir erklären kann?

Ich habe da eine Aufgabe für die ich das wissen möchte:
Sei [mm] a_k [/mm] [mm] k=1... \infty [/mm] Folge positive Reeller Zahlen mit [mm] \summe_{i=1}^{\infty} a_k = 1[/mm]
und ich soll jetzt die Verteilungsfunktion des Wahrscheinlichkeitsmaßes
[mm] P = \summe_{i=0}^{\infty} a_k \delta_k [/mm] bestimmen, wobei [mm] \delta_k [/mm] das Dirak maß ist.


Ich weiß nach einem Satz ist die Verteilfungsfunktion F zu P:
[mm] \summe_{k=1}^{\infty} a_k F_k [/mm]
wobei [mm] F_k [/mm] die Verteilungsfunktion zu [mm] \delta_k [/mm] ist.
aber wie sieht die Verteilungsfunktion von [mm] \delta_k [/mm] und dann die Summe dieser aus?
Bin für jede Hilfe dankbar.
Toyo



        
Bezug
VerteilfungsFkt eines Wahr.maß: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 01.05.2005
Autor: Stefan

Hallo Toyo!

Hilfreich wäre es erst einmal zu wissen, ob ihr die Verteilungsfunktion $F$ eines W-Maßes $P$ auf [mm] $(\IR,{\cal B}(\IR))$ [/mm] als

$F(x) = [mm] P(]-\infty,x])$ [/mm]

oder als

$F(x) = [mm] P(]-\infty,x[)$ [/mm]

definiert habt. Ich gehe jetzt mal von ersterem aus.

Dann gilt natürlich:

[mm] $F_k(x) [/mm] = [mm] \delta_k(]-\infty,x]) [/mm] = [mm] \left\{ \begin{array}{ccc} 1 & , & k \in ]-\infty,x] ,\\[5pt] 0 & , & \mbox{sonst} \end{array} \right. [/mm] = [mm] \left\{ \begin{array}{ccc} 1 & , & k \le x,\\[5pt] 0 & , & \mbox{sonst} \end{array} \right.$ [/mm]

Daher gilt insgesamt:

$F(x) = [mm] \sum\limits_{k=1}^{\infty} \alpha_k F_k(x) [/mm] = [mm] \sum\limits_{k=1}^{\infty} \alpha_k 1_{]-\infty,x]}(k) [/mm] = [mm] \sum\limits_{k=1}^{[x]} \alpha_k$, [/mm]

wobei ich mit $[x]$ die Gauß-Klammer von $x$ bezeichne.

Viele Grüße
Stefan

Bezug
                
Bezug
VerteilfungsFkt eines Wahr.maß: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:26 So 01.05.2005
Autor: Toyo

Hi Stefan, vielen Dank für deine schnelle Antwort,
ich hätte da noch 2 kleine Fragen zu deiner Antwort:

Ersteinmal haben wir die Verteilungsfunktion leider wie im 2ten Fall Definiert.
Dann müsste doch ganz am ende die Summe nicht bis [x] sondern bis
m :=  max [mm] \{ a \in \IN | a < x \} [/mm]   sein oder ?

Und dann noch ein Frage, bei deiner Schlussfolgerung: Daher gilt insgesamt ... nach dem 2ten = hast du dich verschrieben oder was soll dies ausdrücken? Werd daraus leider nicht so ganz schlau.

Danke nochmal für deine Hilfe.
viele grüße Toyo

Bezug
                        
Bezug
VerteilfungsFkt eines Wahr.maß: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 01.05.2005
Autor: Brigitte

Hallo Toyo!

> Ersteinmal haben wir die Verteilungsfunktion leider wie im
> 2ten Fall Definiert.
>  Dann müsste doch ganz am ende die Summe nicht bis [x]
> sondern bis
>  m :=  max [mm]\{ a \in \IN | a < x \}[/mm]   sein oder ?

Ja, genau. Das kommt dann durch das rechts offene Intervall.

> Und dann noch ein Frage, bei deiner Schlussfolgerung: Daher
> gilt insgesamt ... nach dem 2ten = hast du dich
> verschrieben oder was soll dies ausdrücken? Werd daraus
> leider nicht so ganz schlau.

Hm, hier weiß ich leider nicht genau, wo das Problem liegt. Ist es vielleicht die Schreibweise für die Indikatorfunktion? Stefan hat ja nach dem zweiten Gleichheitszeichen lediglich eingesetzt, was er zwei Zeilen darüber "ausgerechnet" hat, nämlich, dass [mm] $F_k$ [/mm] genau dann 1 ist, falls [mm] $k\le [/mm] x$ und 0 sonst. Dies entspricht gerade der Indikatorfunktion auf dem Intervall [mm] $]-\infty,x]$. [/mm] Und dafür schreibt man üblicherweise diese 1 mit dem entsprechenden Intervall als Index.

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]