www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Verständnisproblem zu Beweis
Verständnisproblem zu Beweis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem zu Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mo 06.02.2012
Autor: tanjaxz92

Aufgabe
Proposition If f,g [mm] \in L^2(T), [/mm] then f*g [mm] \in [/mm] C(T).

If f,g [mm] \in L^2(T), [/mm] then there are sequences [mm] (f_k) [/mm] and [mm] (g_k) [/mm] of continuos functions such that [mm] \parallel [/mm] f [mm] -f_k \parallel [/mm] -> 0 and [mm] \parallel [/mm] g- [mm] g_k \parallel [/mm] -> 0 as k -> [mm] \infty. [/mm] The convolutions [mm] f_k [/mm] * [mm] g_k [/mm] are continuous functions. Moreover, they form a Cauchy sequence with respect to the sup-norm.

[mm] \parallel f_j [/mm] * [mm] g_j [/mm] - [mm] f_k [/mm] * [mm] g_k \parallel_\infty \le \parallel(f_j-f_k) [/mm] * [mm] g_j \parallel_\infty [/mm] + [mm] \parallel f_k [/mm] * [mm] (g_j -g_k) \parallel_\infty [/mm]

[mm] \le \parallel f_j [/mm] - [mm] f_k \parallel_2 \parallel g_j \parallel_2 [/mm] + [mm] \parallel f_k \parallel_2 \parallel g_j [/mm] - [mm] g_k \parallel_2 [/mm]

[mm] \le M(\parallel f_j [/mm] - [mm] f_k \parallel_2 [/mm] + [mm] \parallel g_j [/mm] - [mm] g_k \parallel_2) [/mm]

Here we use the fact that [mm] \parallel f_j \parallel_2 \le [/mm] M and [mm] \parallel g_k \parallel_2 \le [/mm] M for some constant M because the sequences converge in [mm] L^2(T). [/mm] By the completeness of C(T), the sequence [mm] (f_k [/mm] * [mm] g_k) [/mm] converges uniformly to a continuous function f*g. This limit is independent of the sequences used to approximate f and g.


Guten Abend,
ich muss eine Ausarbeitung anfertigen und kann einen Beweis nicht nachvollziehen. Zu zeigen ist ja, dass die Faltung zweier [mm] L^2(T) [/mm] Funktionen, wobei T ein Intervall der Länge [mm] 2\pi [/mm] sein soll, Element des Raumes der stetigen Funktionen C(T) ist. Mir ist nun schleierhaft was dieses M sein soll. In dem Text steht, dass [mm] \parallel f_j \parallel_2 \le [/mm] M gilt, aber müsste das nicht [mm] \parallel g_j \parallel_2 \le [/mm] M sein, bzw. analog für [mm] \parallel f_k \parallel_2 \le [/mm] M. Was ich ebenfalls nicht verstehe ist, wie man aus dem ganzen dann darauf kommt dass f*g in C(T) liegt.

Ich hoffe ihr könnte mir ein paar Denkanstöße geben!
Vielen Dank im Vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verständnisproblem zu Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:19 Di 07.02.2012
Autor: fred97


> Proposition If f,g [mm]\in L^2(T),[/mm] then f*g [mm]\in[/mm] C(T).
>  
> If f,g [mm]\in L^2(T),[/mm] then there are sequences [mm](f_k)[/mm] and [mm](g_k)[/mm]
> of continuos functions such that [mm]\parallel[/mm] f [mm]-f_k \parallel[/mm]
> -> 0 and [mm]\parallel[/mm] g- [mm]g_k \parallel[/mm] -> 0 as k -> [mm]\infty.[/mm]
> The convolutions [mm]f_k[/mm] * [mm]g_k[/mm] are continuous functions.
> Moreover, they form a Cauchy sequence with respect to the
> sup-norm.
>  
> [mm]\parallel f_j[/mm] * [mm]g_j[/mm] - [mm]f_k[/mm] * [mm]g_k \parallel_\infty \le \parallel(f_j-f_k)[/mm]
> * [mm]g_j \parallel_\infty[/mm] + [mm]\parallel f_k[/mm] * [mm](g_j -g_k) \parallel_\infty[/mm]
>  
> [mm]\le \parallel f_j[/mm] - [mm]f_k \parallel_2 \parallel g_j \parallel_2[/mm]
> + [mm]\parallel f_k \parallel_2 \parallel g_j[/mm] - [mm]g_k \parallel_2[/mm]
>
> [mm]\le M(\parallel f_j[/mm] - [mm]f_k \parallel_2[/mm] + [mm]\parallel g_j[/mm] - [mm]g_k \parallel_2)[/mm]
>  
> Here we use the fact that [mm]\parallel f_j \parallel_2 \le[/mm] M
> and [mm]\parallel g_k \parallel_2 \le[/mm] M for some constant M
> because the sequences converge in [mm]L^2(T).[/mm] By the
> completeness of C(T), the sequence [mm](f_k[/mm] * [mm]g_k)[/mm] converges
> uniformly to a continuous function f*g. This limit is
> independent of the sequences used to approximate f and g.
>  
> Guten Abend,
>  ich muss eine Ausarbeitung anfertigen und kann einen
> Beweis nicht nachvollziehen. Zu zeigen ist ja, dass die
> Faltung zweier [mm]L^2(T)[/mm] Funktionen, wobei T ein Intervall der
> Länge [mm]2\pi[/mm] sein soll, Element des Raumes der stetigen
> Funktionen C(T) ist. Mir ist nun schleierhaft was dieses M
> sein soll. In dem Text steht, dass [mm]\parallel f_j \parallel_2 \le[/mm]
> M gilt, aber müsste das nicht [mm]\parallel g_j \parallel_2 \le[/mm]
> M sein, bzw. analog für [mm]\parallel f_k \parallel_2 \le[/mm] M.


Die Folgen [mm] (f_k) [/mm] und [mm] (g_k) [/mm] sind konvergente Folgen bezügl. der Norm $|| [mm] \star ||_2$ [/mm]


Also sind sie bezgl. dieser Norm beschränkt, es gibt also [mm] M_1, M_2 \ge [/mm] 0 mit:

                [mm] ||f_k|_2 \le M_1 [/mm] und [mm] ||g_k|_2 \le M_2 [/mm]  für alle k.

Setze M:= max [mm] \{M_1,M_2\} [/mm]


> Was ich ebenfalls nicht verstehe ist, wie man aus dem
> ganzen dann darauf kommt dass f*g in C(T) liegt.

Der gleichmäßige Grenzwert eier Folge stetiger Funktionen ist stetig. (Das ist Analysis I !!!)

FRED

>  
> Ich hoffe ihr könnte mir ein paar Denkanstöße geben!
>  Vielen Dank im Vorraus!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]