www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Verhalten im Unendlichen
Verhalten im Unendlichen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verhalten im Unendlichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Di 18.12.2012
Autor: magics

Aufgabe
Wie verhält sich die angegebene gebrochenrationale Funktion im Unendlichen.

y = [mm] \bruch{(x+1)^2(x-1)}{x(x+3)} [/mm]

Das korrekte Ergebnis des Polynomdivision lautet

[mm] \bruch{Z(x)}{N(x)} [/mm] = x - 2 + [mm] \bruch{5x-1}{x^2+3x} [/mm]

wobei [mm] \bruch{5x-1}{x^2+3x} [/mm] natürlich ein echt gebrochener Divisionsrest ist.


Ich habe Schwierigkeiten mit der Interpretation:
Man würde streng genommen sagen, dass die Funktion sich bei [mm] \limes_{x\rightarrow\infty} [/mm] der Asymptote y = x - 2 nähert.

Doch logisch gesehen wird dieser Grenzwert mit x gegen unendlich ebenfals unendlich groß. Wie lautet die mathematisch korrekte Antwort auf diese Aufgabe?
Grenzwert ist [mm] \infty [/mm] oder Grenzwert ist die Anysmptote x - 2?

Danke für etwaige Hilfe



P.S.:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verhalten im Unendlichen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Di 18.12.2012
Autor: Valerie20

Hi!

> Wie verhält sich die angegebene gebrochenrationale
> Funktion im Unendlichen.
>  
> y = [mm]\bruch{(x+1)^2(x-1)}{x(x+3)}[/mm]
>  Das korrekte Ergebnis des Polynomdivision lautet
>  
> [mm]\bruch{Z(x)}{N(x)}[/mm] = x - 2 + [mm]\bruch{5x-1}{x^2+3x}[/mm]

[ok]

> wobei [mm]\bruch{5x-1}{x^2+3x}[/mm] natürlich ein echt gebrochener
> Divisionsrest ist.
>  
>
> Ich habe Schwierigkeiten mit der Interpretation:
>  Man würde streng genommen sagen, dass die Funktion sich
> bei [mm]\limes_{x\rightarrow\infty}[/mm] der Asymptote y = x - 2
> nähert.

Nein, du lässt doch x gegen unendllich laufen.

Es gibt abhängig vom Zähler und Nennergrad verschiedene Möglichkeiten von Asymptoten.
Google mal nach "Asymptoten pdf". Da findest du sehr gute Erklärungen.

Valerie




Bezug
                
Bezug
Verhalten im Unendlichen: Besten Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Di 18.12.2012
Autor: magics

Danke, das pdf ist super!

Bezug
        
Bezug
Verhalten im Unendlichen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:32 Mi 19.12.2012
Autor: fred97


> Wie verhält sich die angegebene gebrochenrationale
> Funktion im Unendlichen.
>  
> y = [mm]\bruch{(x+1)^2(x-1)}{x(x+3)}[/mm]
>  Das korrekte Ergebnis des Polynomdivision lautet
>  
> [mm]\bruch{Z(x)}{N(x)}[/mm] = x - 2 + [mm]\bruch{5x-1}{x^2+3x}[/mm]
>  
> wobei [mm]\bruch{5x-1}{x^2+3x}[/mm] natürlich ein echt gebrochener
> Divisionsrest ist.
>  
>
> Ich habe Schwierigkeiten mit der Interpretation:
>  Man würde streng genommen sagen, dass die Funktion sich
> bei [mm]\limes_{x\rightarrow\infty}[/mm] der Asymptote y = x - 2
> nähert.
>  
> Doch logisch gesehen wird dieser Grenzwert mit x gegen
> unendlich ebenfals unendlich groß. Wie lautet die
> mathematisch korrekte Antwort auf diese Aufgabe?



Setzen wir f(x)= $ [mm] \bruch{(x+1)^2(x-1)}{x(x+3)} [/mm] $, so gilt:

    |f(x)-(x-2)| [mm] \to [/mm] 0 für x [mm] \to \infty. [/mm]

FRED

>  Grenzwert ist [mm]\infty[/mm] oder Grenzwert ist die Anysmptote x -
> 2?
>  
> Danke für etwaige Hilfe
>  
>
>
> P.S.:
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]