www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Vereinfachung von Termen
Vereinfachung von Termen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachung von Termen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:19 Di 27.08.2013
Autor: Barney147

Aufgabe 1
[mm] 1/(a^2b-a^3)-1/(a^2b+ab^2)+1/(a^2b-ab^2) [/mm]

Aufgabe 2
[mm] log\wurzel{ab}-log(ab/4)-0.5 [/mm] log(1/ab)

Hallo Forenmitglieder, es wäre nett, wenn mir jemand bei den Ansätzen zur Vereinfachung der Terme helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vereinfachung von Termen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Di 27.08.2013
Autor: angela.h.b.


> [mm]1/(a^2b-a^3)-1/(a^2b+ab^2)+1/(a^2b-ab^2)[/mm]
> [mm]log\wurzel{ab}-log(ab/4)-0.5[/mm] log(1/ab)
> Hallo Forenmitglieder, es wäre nett, wenn mir jemand bei
> den Ansätzen zur Vereinfachung der Terme helfen könnte.

Hallo,

[willkommenmr].

Beachte bitte in Zukunft die Forenregeln: wir möchten wissen, was Du bisher getan hast, und an welcher Stelle Dein Problem liegt.

Zur 1. Aufgabe:

ich würde in den Nennern erstmal ausklammern:

[mm] \bruch{1}{a^2b-a^3}+\bruch{1}{a^2b+ab^2}+\bruch{1}{a^2b-ab^2} [/mm]
[mm] =\bruch{1}{a^2(b-a)}+\bruch{1}{ab(...+...)}+\bruch{1}{ab(...-...)} [/mm]
=

Nun den Hauptnenner suchen und alles auf den Hauptnenner bringen.


Zur 2. Aufgabe:
zunächst einmal ist es gut zu wissen, daß [mm] \wurzel{ab}=(ab)^{\bruch{1}{2}}. [/mm]
Und die MBLogarithmusgesetze solltest Du Dir anschauen.

LG Angela



>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Vereinfachung von Termen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:51 Di 27.08.2013
Autor: Barney147

Hallo Angela,

soweit bin ich bereits gewesen, dass ich die verschiedenen Sachen ausgeklammert habe. Doch ich weiß nicht, wie ich auf den gemeinsamen Nenner komme, da sich die Vorzeichen varrieren.

Bezug
                        
Bezug
Vereinfachung von Termen: Zwischenergebnisse?
Status: (Antwort) fertig Status 
Datum: 15:01 Di 27.08.2013
Autor: Roadrunner

Hallo Barney!


Wie lauten denn nach dem Ausklammern die einzelnen (faktorisierten) Nenner?
Angela hatte das doch schon so schön vorbereitet.

Im Zweifelsfalle besteht der Hauptnenner aus dem Produkt aller auftretenden Faktoren. Wobei das hier auch deutlich einfacher ist.

Zudem sollte auch helfen, dass gilt:  $(b-a) \ = \ (-1)*(-b+a) \ = \ -(a-b)$


Gruß vom
Roadrunner

Bezug
                                
Bezug
Vereinfachung von Termen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Di 27.08.2013
Autor: Barney147

[mm] 1/(a^2*(b-a)) [/mm] - 1/(ab*(a+b)) + 1/(ab(a-b))

Bezug
                                        
Bezug
Vereinfachung von Termen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Di 27.08.2013
Autor: M.Rex


> [mm]1/(a^2*(b-a))[/mm] - 1/(ab*(a+b)) + 1/(ab(a-b))

Das stimmt so. Jetzt bestimme den Hauptnenner.

Marius


 

Bezug
                                                
Bezug
Vereinfachung von Termen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Di 27.08.2013
Autor: Barney147

Den kriege ich nicht heraus. Aber die Antwort auf meine zweite Frage müsste log(4) sein.

Bezug
                                                        
Bezug
Vereinfachung von Termen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 27.08.2013
Autor: M.Rex


> Den kriege ich nicht heraus.


Der erste bruch hat im Nenner die Faktoren a, a und (a+b), der zweite die Faktoren a, b und (a+b), der dritte a, b und (a-b)

Was wäre denn das kleinste gemeinsame Vielfache dieser drei Nenner?

> Aber die Antwort auf meine
> zweite Frage müsste log(4) sein.

Das stimmt in der Tat.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]