www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Vereinfachen von Potenzen
Vereinfachen von Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachen von Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 So 15.10.2006
Autor: MatheSckell

Aufgabe
Vereinfache
[mm] (x+y)^{7}*(x^{2}-y^{2})+y(x+y)^{8} [/mm]

Liebes Forum,

bei dieser Aufgabe komme ich nicht weiter:
Ich habe versucht alles auszumultiplizieren und dann wieder etwas auszuklammern. Ohne Erfolg.

Ich habe entdeckt, dass in der 2. Klammer der 3. Binomische Lehrsatz steck, weiß aber nicht ob ich ihn hier brauche.

Kurzum ich bin echt ratlos. Kann mir bitte jemand helfen?

Viele Grüsse
MatheSckell

        
Bezug
Vereinfachen von Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 So 15.10.2006
Autor: Teufel

Hallo.

Du könntest z.B.
[mm] (x+y)^{7} [/mm] in (x+y)(x+y)(x+y)(x+y)(x+y)(x+y)(x+y) zerlegen und ausmultiplizieren... was allerdings sehr lange dauern würde.

Oder du verkürzt es etwas mit
(x+y)²*(x+y)²*(x+y)²*(x+y)

Oder du ziehst das Pascalsche Dreieck heran und benutzt das.

http://de.wikipedia.org/wiki/Bild:Pascal_triangle.png

(x+y)²=x²+2xy+y², wie du bereits kennst. Und hier sind die Koeffizienten wie in der 2. Zeile des Pascalschen Dreiecks (die "Spitze" ist Zeile 0)

(x+y)³=x³+3x²y+3xy²+y²
Es ist jetzt immer das gleiche:
der linke Summand in der Klammer startet mit dem Exponenten, der zur Klammer gehört, also hier die ³. Dann arbeitet man alle Koeffizienten ab, die du in der 3. Zeile des Dreiecks sehen kannst. Und von links nach rechts sinkt dieser Koeffizient vom x und der vom y steigt.

[mm] (x+y)^{4} [/mm] wäre demnach:
[mm] x^{4}+4x³y+6x²y²+4xy³+y^{4} [/mm]

Die Koeffizienten sind also genauso wie im Pascalschen Dreieck und der Koeffizient vom x sinkt, der vom y steigt.

Das gleiche kannst du dann auch auf [mm] (x+y)^{7} [/mm] und andere Terme anwenden.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]