www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Verdichtungssatz
Verdichtungssatz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verdichtungssatz: Satz richtig, oder nicht?
Status: (Frage) beantwortet Status 
Datum: 20:25 Do 22.11.2007
Autor: Ines27

Aufgabe
Für welche [mm] \alpha \in \IR [/mm] konvergiert [mm] \summe_{\infty}^{n=2} \bruch{1}{n ln^{\alpha} n} [/mm]

Ich würde diese Aufgabe gerne mit dem Verdichtungssatz lösen, bin mir aber nicht ganz sicher, ob ich das richtig gemacht habe:

1) Verdichtungssatz: [mm] \summe_{\infty}^{k=1} \bruch{1}{2^{k} ln^{\alpha} 2^{k}} [/mm]

2) [mm] \summe_{\infty}^{n=2} \bruch{1}{n ln^{\alpha} n} [/mm] = [mm] \summe_{\infty}^{n=5} \bruch{1}{(n ln n) ln (ln n)^{\alpha}} [/mm]

3) Konvergiert also genau dann, wenn:
[mm] \summe_{}^{} 2^{k} \bruch{1}{2^{k} (ln 2^{k}) (ln(ln 2^{k}))^{\alpha}} [/mm]

= [mm] \summe_{}^{} \bruch{1}{k(ln k)^{\alpha}} [/mm]

        
Bezug
Verdichtungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Do 22.11.2007
Autor: rainerS

Hallo!

> Für welche [mm]\alpha \in \IR[/mm] konvergiert [mm]\summe_{\infty}^{n=2} \bruch{1}{n ln^{\alpha} n}[/mm]

>

> Ich würde diese Aufgabe gerne mit dem Verdichtungssatz
> lösen, bin mir aber nicht ganz sicher, ob ich das richtig
> gemacht habe:
>  
> 1) Verdichtungssatz: [mm]\summe_{\infty}^{k=1} \bruch{1}{2^{k} ln^{\alpha} 2^{k}}[/mm]

Da fehlt noch ein Faktor [mm]2^k[/mm]. Deine Reihe ist doch von der Form
[mm]\summe_{n=2}^{\infty} a_n[/mm] mit [mm]a_n = \bruch{1}{n\ln^\alpha n}[/mm].

Der Verdichtungssatz sagt, dass die Reihe

[mm]\summe_{k=0}^\infty 2^k*a_{2^k} =\summe_{k=0}^\infty 2^k \bruch{1}{2^k\ln^\alpha (2^k)}[/mm]

das gleiche Konvergenzverhalten hat. Ich würde an dieser Stelle weitermachen.

> 2) [mm]\summe_{\infty}^{n=2} \bruch{1}{n ln^{\alpha} n}[/mm] =
> [mm]\summe_{\infty}^{n=5} \bruch{1}{(n ln n) ln (ln n)^{\alpha}}[/mm]

Diese Gleichung verstehe ich nicht. Wie kommst du auf n=5 bei der zweiten Summe?

> 3) Konvergiert also genau dann, wenn:
>  [mm]\summe_{}^{} 2^{k} \bruch{1}{2^{k} (ln 2^{k}) (ln(ln 2^{k}))^{\alpha}}[/mm]
>  
> = [mm]\summe_{}^{} \bruch{1}{k(ln k)^{\alpha}}[/mm]  

Das ist richtig. Nur: was bringt dir das?

Viele Grüße
   Rainer

Bezug
                
Bezug
Verdichtungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Do 22.11.2007
Autor: Ines27

Ja stimmt, hab das [mm] 2^{k} [/mm] vergessen!
----

> 3) Konvergiert also genau dann, wenn:
>  $ [mm] \summe_{}^{} 2^{k} \bruch{1}{2^{k} (ln 2^{k}) (ln(ln 2^{k}))^{\alpha}} [/mm] $
>  
> = $ [mm] \summe_{}^{} \bruch{1}{k(ln k)^{\alpha}} [/mm] $  

> Das ist richtig. Nur: was bringt dir das?

Das ist eine gute Frage. Unser Prof hat ein ähnliches Bsp so durchgerechnet. Bis hierhin komme ich auch, aber eigentlich hab ich gedacht wir brauchen dann nicht mehr machen? Hm... bin überfragt.

Bezug
                        
Bezug
Verdichtungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Do 22.11.2007
Autor: rainerS

Hallo!

Ich hätte jetzt einfach so argumentiert:

Der Verdichtungssatz sagt, dass die Reihe

[mm]\summe_{k=0}^\infty 2^k*a_{2^k} =\summe_{k=0}^\infty 2^k \bruch{1}{2^k\ln^\alpha (2^k)}[/mm]

das gleiche Konvergenzverhalten hat.

Die Reihe rechts ist

[mm]\summe_{k=0}^\infty 2^k \bruch{1}{2^k\ln^\alpha (2^k)} =\summe_{k=0}^\infty \bruch{1}{\ln^\alpha (2^k)} = \summe_{k=0}^\infty \bruch{1}{(k\ln2)^\alpha} = \bruch{1}{\ln^\alpha 2} \summe_{k=0}^\infty \bruch{1}{k^\alpha}[/mm].

Das ist eine verallgemeinerte harmonische Reihe, die konvergiert für [mm]\alpha>1[/mm].

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]