Vektorzerlegung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Zerlegen Sie [mm] \vec{a} [/mm] = (3, -3, 12) in eine summe von 2 vektoren, von denen einer ein vielfaches von [mm] \vec{b} [/mm] = (2, 0, -2) und der andere senkrecht zu [mm] \vec{b} [/mm] ist. |
Ich würde gerne wissen wie man allgemein bei dieser art von aufgaben heran geht;
Es gab einen Lösungsvorschlag zu dieser Aufgaben jedoch verstehe ich nicht warum der ansatz so gewählt wurde: und gibt es vllt. auch einen anderen lösungsansatz ?
Lösungsvorschlag:
Wir machen den Ansatz [mm] \vec{a} [/mm] = [mm] \lambda*\vec{b} [/mm] + [mm] \vec{c}.
[/mm]
Da [mm] \vec{c} [/mm] senkrecht zu [mm] \vec{b} [/mm] sein soll, ist [mm] \vec{a} [/mm] * [mm] \vec{b} [/mm] = [mm] \lambda [/mm] * [mm] \vec{b} [/mm] * [mm] \vec{b} [/mm] ,
also [mm] \lambda [/mm] = ( [mm] \vec{a} [/mm] * [mm] \vec{b} [/mm] ) :( [mm] |\vec{b}| [/mm] * [mm] |\vec{b}| [/mm] ) = -18/8
Das gesuchte Vielfache von [mm] \vec{b} [/mm] ist also [mm] -2,25*\vec{b} [/mm] = (4.5, 0, 4.5) und der gesuchte senkrechte Vektor zu [mm] \vec{b} [/mm] ist [mm] \vec{c} [/mm] = [mm] \vec{a} [/mm] + [mm] 2,25*\vec{b} [/mm] = (7.5, -3, 7.5)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:46 So 22.04.2012 | Autor: | abakus |
> Zerlegen Sie [mm]\vec{a}[/mm] = (3, -3, 12) in eine summe von 2
> vektoren, von denen einer ein vielfaches von [mm]\vec{b}[/mm] = (2,
> 0, -2) und der andere senkrecht zu [mm]\vec{b}[/mm] ist.
> Ich würde gerne wissen wie man allgemein bei dieser art
> von aufgaben heran geht;
> Es gab einen Lösungsvorschlag zu dieser Aufgaben jedoch
> verstehe ich nicht warum der ansatz so gewählt wurde:
Dann sollten wir das mal klären.
Für das Skalarprodukt von Vektoren gilt auch das Distributivgesetz, also [mm]\vec{u}*(\vec{v}+\vec{w})=\vec{u}*\vec{v}+\vec{u}*\vec{w}[/mm]
Wenn nun die Vektorgleichung [mm]\vec{a}=\lambda\vec{b}+\vec{c}[/mm] auf beiden Seiten mit [mm] $\vec{b}$ [/mm] multipliziert wird, erhält man [mm]\vec{a}*\vec{b}=(\lambda\vec{b}+\vec{c})*\vec{b}[/mm], was nach dem eben erwähnten Distributivgesetz zu [mm]\lambda\vec{b}*\vec{b}+\vec{c}*\vec{b}[/mm] wird.
Der zweite Summand dieser Summe wird Null, weil das Skalarprodukt zwischen zwei zuenander senkrechten Vektoren gebildet wird...
> und
> gibt es vllt. auch einen anderen lösungsansatz ?
>
> Lösungsvorschlag:
> Wir machen den Ansatz [mm]\vec{a}[/mm] = [mm]\lambda*\vec{b}[/mm] +
> [mm]\vec{c}.[/mm]
> Da [mm]\vec{c}[/mm] senkrecht zu [mm]\vec{b}[/mm] sein soll, ist [mm]\vec{a}[/mm] *
> [mm]\vec{b}[/mm] = [mm]\lambda[/mm] * [mm]\vec{b}[/mm] * [mm]\vec{b}[/mm] ,
... womit das Zustandekommen dieser Ansatzgleichung erklärt ist.
Gruß Abakus
>
> also [mm]\lambda[/mm] = ( [mm]\vec{a}[/mm] * [mm]\vec{b}[/mm] ) :( [mm]|\vec{b}|[/mm] *
> [mm]|\vec{b}|[/mm] ) = -18/8
>
> Das gesuchte Vielfache von [mm]\vec{b}[/mm] ist also [mm]-2,25*\vec{b}[/mm] =
> (4.5, 0, 4.5) und der gesuchte senkrechte Vektor zu [mm]\vec{b}[/mm]
> ist [mm]\vec{c}[/mm] = [mm]\vec{a}[/mm] + [mm]2,25*\vec{b}[/mm] = (7.5, -3, 7.5)
>
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:00 So 22.04.2012 | Autor: | VanDamme90 |
Vielen Dank für die schnelle Hilfe :)
|
|
|
|