Vektorraumaxiome < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:23 Mo 31.03.2008 | Autor: | Raiden82 |
Aufgabe | Geben Sie an, welche der Vektorraumaxiome erfüllt sind, wenn man in der Menge [mm] \IZ3 [/mm] die Addition auf die übliche Weise definiert, also durch
[mm] \vektor{x1 \\ x2\\x3} [/mm] + [mm] \vektor{y1 \\ y2\\y3}=\vektor{x1+y1\\ x2+y2\\x3+y3}
[/mm]
die Multiplikation zwischen reellen Zahlen und Elementen des [mm] \IR3 [/mm] jedoch auf folgende Weise:
[mm] a*\vektor{x1 \\ x2\\x3}=\vektor{8a*x1 \\ 8a*x2\\8a*x3}
[/mm]
V1: [mm] (a*b)*\vec{x}=a*(b*\vec{x}) [/mm] für alle [mm] \vec{x} \inV [/mm] und für alle [mm] a,b\inK
[/mm]
V2, Teil 1: [mm] a*(\vec{x}+\vec{y}) [/mm] = [mm] a*\vec{x}+a*\vec{y} [/mm] für alle [mm] \vec{x},\vec{y}\inV [/mm] und für alle [mm] a\in [/mm] K
V2, Teil 2: [mm] (a+b)*\vec{x} [/mm] = [mm] a*\vec{x}+b*\vec{x} [/mm] für alle [mm] \vec{x},\vec{y}\inV [/mm] und für alle [mm] a,b\in [/mm] K
V3: [mm] 1*\vec{x}=\vec{x} [/mm] für alle [mm] x\inV [/mm] und das Einselement [mm] 1\inK [/mm] |
Hi,
könnte das jemand bitte überprüfen ...
Habe für
V1: Falsch
V2:Teil 1 Falsch
V2:Teil 2 Wahr
V3: Wahr
Thx
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Geben Sie an, welche der Vektorraumaxiome erfüllt sind,
> wenn man in der Menge [mm]\IZ3[/mm] die Addition auf die übliche
> Weise definiert, also durch
>
> [mm]\vektor{x1 \\ x2\\x3}[/mm] + [mm]\vektor{y1 \\ y2\\y3}=\vektor{x1+y1\\ x2+y2\\x3+y3}[/mm]
>
> die Multiplikation zwischen reellen Zahlen und Elementen
> des [mm]\IR3[/mm] jedoch auf folgende Weise:
> [mm]a*\vektor{x1 \\ x2\\x3}=\vektor{8a*x1 \\ 8a*x2\\8a*x3}[/mm]
>
>
> V1: [mm](a*b)*\vec{x}=a*(b*\vec{x})[/mm] für alle [mm]\vec{x} \inV[/mm] und
> für alle [mm]a,b\inK[/mm]
> V2, Teil 1: [mm]a*(\vec{x}+\vec{y})[/mm] = [mm]a*\vec{x}+a*\vec{y}[/mm] für
> alle [mm]\vec{x},\vec{y}\inV[/mm] und für alle [mm]a\in[/mm] K
> V2, Teil 2: [mm](a+b)*\vec{x}[/mm] = [mm]a*\vec{x}+b*\vec{x}[/mm] für alle
> [mm]\vec{x},\vec{y}\inV[/mm] und für alle [mm]a,b\in[/mm] K
> V3: [mm]1*\vec{x}=\vec{x}[/mm] für alle [mm]x\inV[/mm] und das Einselement
> [mm]1\inK[/mm]
Hey,
ich versuch das mal ausführlich darzustellen.
V1:
[mm](a*b)*\vec{x}=\vektor{8*(a*b)*x_{1}\\8*(a*b)*x_{2}\\8*(a*b)*x_{3}}\not=\vektor{8*a*(8*b*x_{1})\\8*a*(8*b*x_{2})\\8*a*(8*b*x_{3})}=a*\vektor{8*b*x_{1}\\8*b*x_{2}\\8*b*x_{3}}=a*(b*\vec{x})[/mm]
also V1:falsch
V2 Teil1:
[mm]a*(\vec{x}+\vec{y}) =a*\vektor{x_{1}+y_{1}\\x_{2}+y_{2}\\x_{3}+y_{3}}=\vektor{8*a*(x_{1}+y_{1})\\8*a*(x_{2}+y_{2})\\8*a*(x_{3}+y_{3})}=\vektor{8*a*x_{1}\\8*a*x_{2}\\8*a*x_{3}}+\vektor{8*a*y_{1}\\8*a*y_{2}\\8*a*y_{3}}=a*\vec{x}+a*\vec{y}[/mm]
also V2 Teil1: wahr
V2 Teil2:
[mm](a+b)*\vec{x} =\vektor{8*(a+b)*x_{1}\\8*(a+b)*x_{2}\\8*(a+b)*x_{3}}=\vektor{8*a*x_{1}+8*b*x_{1}\\8*a*x_{2}+8*b*x_{2}\\8*a*x_{3}+8*b*x_{3}}=\vektor{8*a*x_{1}\\8*a*x_{2}\\8*a*x_{3}}+\vektor{8*b*x_{1}\\8*b*x_{2}\\8*b*x_{3}}=a*\vec{x}+b*\vec{x}[/mm]
also V2 Teil2: wahr
V3:
Ist ja einfach ein spezieller Skalar mal Vektor, also nach der gegebenen Rechenregel:
[mm]1*\vec{x}=\vektor{8*1*x_{1}\\8*1*x_{2}\\8*1*x_{3}}\not=\vektor{x_{1}\\x_{2}\\x_{3}}=\vec{x}[/mm]
also V3 falsch
ergibt das für dich Sinn?
Bitte frag nach, falls dir etwas unklar ist.
Gruss Mr._Calculus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:52 Di 01.04.2008 | Autor: | Raiden82 |
Danke das Hilft mir weiter... ^^
|
|
|
|