www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum-Axiome
Vektorraum-Axiome < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum-Axiome: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 28.10.2010
Autor: Raute1337

Aufgabe
Zeigen Sie: Axiom (A2) ["Kommutativgesetz der Addition"] in der Definition eines Vektorraums folgt bereits aus  den anderen Axiomen.

Ich habe irgendwie das Gefühl bei meinem Ansatz etwas wichtiges vergessen zu haben. Weil falls das stimmen sollte, wäre das Axiom (A2) in den einfachen Körperaxiomen ebenfalls redundant, was natürlich nicht sein kann. Ich muss wohl irgendwie auf die speziellen Axiome der skalaren Multiplikation zurückgreifen. Weiß aber nicht genau, was noch fehlt.
Ich hoffe jemand kann mir da einen kleinen Schubser in die richtige Richtung geben!

Mein Ansatz:
Seien v,w [mm] \in [/mm] eines Vektorraums V.
Vorgehensweise: Zeigen, dass z.B. (v + w) + (-(w + v)) = 0 gilt.
Damit wäre (-(w + v)) = (-(v + w)) bzw. (w + v) = (v + w).

(v + w) + ((-w) + (-v)) = (Add. Assoz.) v + (w + (-w)) + (-v) = (Add. Invers) v + 0 + (-v) = (Nullelement) v + (-v) = (Add. Invers) 0

[mm] \Rightarrow [/mm] ((-w) + (-v)) ist das additive Invers von (v + w) und damit gilt:
-(v + w) = (-w) + (-v) bzw (-v) + (-w) = (-w) + (-v).
[mm] \Box [/mm]

        
Bezug
Vektorraum-Axiome: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Fr 29.10.2010
Autor: angela.h.b.


> Zeigen Sie: Axiom (A2) ["Kommutativgesetz der Addition"] in
> der Definition eines Vektorraums folgt bereits aus  den
> anderen Axiomen.


Hallo,

Dein Unwohlsein trügt Dich nicht.

> Mein Ansatz:
>  Seien v,w [mm]\in[/mm] eines Vektorraums V.
>  Vorgehensweise: Zeigen, dass z.B. (v + w) + (-(w + v)) = 0
> gilt.
>  Damit wäre (-(w + v)) = (-(v + w)) bzw. (w + v) = (v +
> w).
>  
> (v + w) + ((-w) + (-v)) = (Add. Assoz.) v + (w + (-w)) +
> (-v) = (Add. Invers) v + 0 + (-v) = (Nullelement) v + (-v)
> = (Add. Invers) 0
>  
> [mm]\Rightarrow[/mm] ((-w) + (-v)) ist das additive Invers von (v +
> w) und damit gilt:
> [mm] \red{ -(v + w) = (-w) + (-v) bzw (-v) + (-w) = (-w) + (-v)}. [/mm]
>  [mm]\Box[/mm]  

Die Äquivalenz, die Du in der letzten Zeile verwendest, bekommst Du nicht aus den Dir zur Verfügung stehenden Axiomen, denn i.a. ist
-(v + [mm] w)\not=(-v) [/mm] + (-w).

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]