Vektorräume, Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:22 Di 21.07.2009 | Autor: | mari87 |
Aufgabe | Es seien V ein K-Vektorraum und U, W zwei Untervektorräume von V, so dass V = U [mm] \cup [/mm] W. Zeigen Sie, dass U = V oder W = V.
|
Brauche dringend Hilfe. Danke!!!!
Mein Ansatz war bislang einfach nur:
Widerspruchsbeweis, es gibt ein u, das in U liegt, aber nicht in W und ein w, das in W liegt, aber nicht in U...und nun?
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?postid=1008073#post1008073
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:11 Di 21.07.2009 | Autor: | pelzig |
Du musst zeigen: "V Vektorraum mit UVR U,W und [mm] $V=U\cup [/mm] W$ sowie [mm] $U\ne [/mm] V$, so ist $W=V$".
Beweis: [mm] $W\subset [/mm] V$ ist klar. Sei also [mm]v\in V[/mm], wir müssen [mm]v\in W[/mm] zeigen. Nach Voraussetzung gibt es [mm] $x\in V\setminus U\subset [/mm] W$, wäre [mm] $v\not\in [/mm] W$, so müsste wegen [mm] $V=U\cup [/mm] W$ gelten [mm]v\in U[/mm]. Nun ist aber $$v=x+(v-x)$$ Der erste Summand liegt in W nach Konstruktion. Der zweite Summand liegt ebenfalls in W, da andernfalls [mm]v-x\in U[/mm] liegen müsste und somit auch $-(v-x)+v=x$, was wir ja per Konstruktion ausgeschlossen hatten. Damit ist aber auch [mm] $v=x+(v-x)\in [/mm] W$ - Widerspruch.
Gruß, Robert
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:12 Di 21.07.2009 | Autor: | Marcel |
Hallo,
> Es seien V ein K-Vektorraum und U, W zwei Untervektorräume
> von V, so dass V = U [mm]\cup[/mm] W. Zeigen Sie, dass U = V oder W
> = V.
>
>
>
> Brauche dringend Hilfe. Danke!!!!
>
> Mein Ansatz war bislang einfach nur:
> Widerspruchsbeweis, es gibt ein u, das in U liegt, aber
> nicht in W und ein w, das in W liegt, aber nicht in U...
der Ansatz ist zu korrigieren:
Wenn weder [mm] $U=V\,$ [/mm] noch [mm] $V=\,W$ [/mm] gilt, dann gilt ja:
Es ist
($U [mm] \setminus [/mm] V [mm] \not=\emptyset$ [/mm] oder $V [mm] \setminus [/mm] U [mm] \not=\emptyset$) [/mm] und ($V [mm] \setminus [/mm] W [mm] \not=\emptyset$ [/mm] oder $W [mm] \setminus [/mm] V [mm] \not=\emptyset$).
[/mm]
Dieser Ansatz wäre weiterzuverfolgen!!
Beachte:
Du hattest oben geschrieben:
> ...es gibt ein u, das in U liegt, aber
> nicht in W und ein w, das in W liegt, aber nicht in U...
Analysieren wir das mal:
Es ist so, dass, wenn weder $U [mm] \subset [/mm] W$ noch $W [mm] \subset [/mm] U$ gilt, dann gibt es ein $u [mm] \in [/mm] U$ mit $u [mm] \notin [/mm] W$ und ein $w [mm] \in [/mm] W$ mit $w [mm] \notin [/mm] U$. Aber Du sollst ja hier nicht zeigen, dass $U [mm] \subset [/mm] W$ oder $W [mm] \subset [/mm] U$ ist, sondern, dass [mm] $U\blue{=V}$ [/mm] oder [mm] $W\blue{=V}$ [/mm] gilt!
Also: Wie kommst Du, wenn weder [mm] $U=V\,$ [/mm] noch [mm] $W=V\,$ [/mm] gilt, zu:
> ...es gibt ein u, das in U liegt, aber
> nicht in W und ein w, das in W liegt, aber nicht in U...
???
(Edit: Ich sehe es gerade: Wegen $U [mm] \subset [/mm] V$ gibt es, wenn $U [mm] \not=V$ [/mm] ist, ein $w [mm] \in [/mm] V$ mit $w [mm] \notin U\,.$ [/mm] Wegen $V=U [mm] \cup [/mm] W$ muss dann aber $w [mm] \in [/mm] W$ sein. Analog:
Es gibt ein $u [mm] \in [/mm] V$ mit $u [mm] \notin W\,.$ [/mm] Dann muss aber $u [mm] \in [/mm] U$ gelten. Also Deine Folgerung oben ist doch korrekt.)
Und nur zur Klärung von Roberts (Pelzigs) Vorgehensweise:
Behauptet wird oben ja:
Es gilt [mm] $A\,$ [/mm] oder [mm] $B\,$. [/mm] (Aussage [mm] $A:\,$ [/mm] Es gilt [mm] $U=V\,$; [/mm] Aussage [mm] $B:\,$ [/mm] Es gilt [mm] $U=W\,$.) [/mm] Nun gilt
$$A [mm] \vee [/mm] B$$
[mm] $$\gdw$$ [/mm]
[mm] $$\big(\neg(\neg A)\big) \vee [/mm] B$$
[mm] $$\underset{\text{per Definitionem von }'\Rightarrow'}{\gdw}$$ [/mm]
[mm] $$(\star)\;\;\;(\neg [/mm] A) [mm] \Rightarrow B\,.$$
[/mm]
Robert führt also den Beweis von $A [mm] \vee [/mm] B$ gemäß [mm] $(\star)$, [/mm] denn bekanntlich gilt:
Es gilt nicht [mm] $U=V\,$ [/mm] genau dann, wenn $U [mm] \not=V$ [/mm] ist.
P.S.:
Du könntest also auch Deinen Weg weiterverfolgen.
Sei $U [mm] \not=V$ [/mm] und $W [mm] \not=V$. [/mm] Dann gibt es ein $w [mm] \in [/mm] W$ mit $w [mm] \notin U\,,$ [/mm] insbesondere ist also $w [mm] \not=0\,;$ [/mm] wir wählen ein solches [mm] $w\,$ [/mm] und halten es fest.
Ferner wählen wir dann auch ein $u [mm] \in [/mm] U$ mit $u [mm] \notin W,\,$ [/mm] insbesondere ist auch $u [mm] \not=0\,.$
[/mm]
Betrachte nun den Vektor $x:=u+w$ (beachte: Wegen $u [mm] \in [/mm] U [mm] \subset [/mm] V$ und $w [mm] \in [/mm] W [mm] \subset [/mm] V$ ist [mm] $x\,$ [/mm] als Summe zweier Vektoren aus [mm] $V\,$ [/mm] auch wieder in [mm] $V\,$ [/mm] gelegen). Dann gilt $x [mm] \not=0$ [/mm] (Warum?), und Du kannst Dir überlegen, dass $x=u+w [mm] \notin [/mm] (U [mm] \cup [/mm] W)$ gilt. Das wäre der gewünschte Widerspruch.
Gruß,
Marcel
|
|
|
|