www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Vektorgleichung bilden
Vektorgleichung bilden < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorgleichung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Fr 14.02.2014
Autor: kakashi93

Hallo, ich habe heute eine Klausur in Lineare Algebra geschrieben, und eine Aufgabe lautete ungefähr so: Lösen Sie nach [mm] \vec{x} [/mm] auf.

[mm] \vektor{1 \\ 1 \\ 1} [/mm] + 2 [mm] \vektor{2 \\ 1 \\ 2} [/mm] + [mm] \vektor{3 \\ 1 \\ 2} [/mm] + [mm] \vec{x} [/mm] = [mm] \vec{0} [/mm]

Ich hab dann einfach Gleichung nach diesem Schema aufgestellt:

[mm] 1+4+3+x_{1} [/mm] = 0 und dann nach x aufgelöst. Stimmt das so? Weil logisch betrachtet kommt dann immer 0 raus.

        
Bezug
Vektorgleichung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Fr 14.02.2014
Autor: Sax

Hi,

> Hallo, ich habe heute eine Klausur in Lineare Algebra
> geschrieben, und eine Aufgabe lautete ungefähr so: Lösen
> Sie nach [mm]\vec{x}[/mm] auf.
>  
> [mm]\vektor{1 \\ 1 \\ 1}[/mm] + 2 [mm]\vektor{2 \\ 1 \\ 2}[/mm] + [mm]\vektor{3 \\ 1 \\ 2}[/mm]
> + [mm]\vec{x}[/mm] = [mm]\vec{0}[/mm]
>  
> Ich hab dann einfach Gleichung nach diesem Schema
> aufgestellt:
>  
> [mm]1+4+3+x_{1}[/mm] = 0 und dann nach x aufgelöst. Stimmt das so?
> Weil logisch betrachtet kommt dann immer 0 raus.


logisch betrachtet ergibt sich [mm] x_1=-8 [/mm] (was auch tatsächlich stimmt), und ganz analog bestimmt man [mm] x_2 [/mm] und [mm] x_3 [/mm] und somit ganz [mm] \vec{x}. [/mm]

Gruß Sax.

Bezug
        
Bezug
Vektorgleichung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 02:24 Sa 15.02.2014
Autor: Marcel

Hallo,

> Hallo, ich habe heute eine Klausur in Lineare Algebra
> geschrieben, und eine Aufgabe lautete ungefähr so: Lösen
> Sie nach [mm]\vec{x}[/mm] auf.
>  
> [mm]\vektor{1 \\ 1 \\ 1}[/mm] + 2 [mm]\vektor{2 \\ 1 \\ 2}[/mm] + [mm]\vektor{3 \\ 1 \\ 2}[/mm]
> + [mm]\vec{x}[/mm] = [mm]\vec{0}[/mm]
>  
> Ich hab dann einfach Gleichung nach diesem Schema
> aufgestellt:
>  
> [mm]1+4+3+x_{1}[/mm] = 0 und dann nach x aufgelöst. Stimmt das so?
> Weil logisch betrachtet kommt dann immer 0 raus.

nach welcher Logik denn?

    [mm] $\vektor{1 \\ 1 \\ 1} [/mm] + 2 [mm] \vektor{2 \\ 1 \\ 2} [/mm] + [mm] \vektor{3 \\ 1 \\ 2}+\vec{x} [/mm] = [mm] \vec{0}$ [/mm]

    [mm] $\iff$ $\vektor{x_1\\x_2\\x_3}=\vektor{0\\0\\0}-\left(\vektor{1 \\ 1 \\ 1} + 2 \vektor{2 \\ 1 \\ 2} + \vektor{3 \\ 1 \\ 2}\right)$ [/mm]

sieht ziemlich logisch aus... (weiterrechnen kannst und darfst Du)!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]