www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Vektoren
Vektoren < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: Bestimmung einer Basis
Status: (Frage) beantwortet Status 
Datum: 13:23 So 16.11.2008
Autor: mathe_tipster

Aufgabe
Man bestimme eine Basis des von den Vektoren

[mm]v1 = \vektor{1 \\ 1 \\ 1} v2 = \vektor{0 \\ 3 \\ 1} v3 = \vektor{1 \\ -2 \\ 0} v4 = \vektor{-2 \\ 1 \\ -1}[/mm]

aufgespannten Vektorraums

Hallo,

wollte die Richtigkeit meiner Lösung überprüfen. Sind die Basen dieser Aufgabenstellung [mm]\vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 3 \\ 1}[/mm]

lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 So 16.11.2008
Autor: MathePower

Hallo mathe_tipster,



> Man bestimme eine Basis des von den Vektoren
>  
> [mm]v1 = \vektor{1 \\ 1 \\ 1} v2 = \vektor{0 \\ 3 \\ 1} v3 = \vektor{1 \\ -2 \\ 0} v4 = \vektor{-2 \\ 1 \\ -1}[/mm]
>  
> aufgespannten Vektorraums
>  Hallo,
>  
> wollte die Richtigkeit meiner Lösung überprüfen. Sind die
> Basen dieser Aufgabenstellung [mm]\vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 3 \\ 1}[/mm]


Stimmt. [ok]

Die Basis ist dann [mm]<\pmat{1 \\ 1 \\ 1}, \ \pmat{0 \\ 3 \\ 1}>[/mm]


>  
> lg
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]