www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - VektorGleichung umformen
VektorGleichung umformen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

VektorGleichung umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Di 21.02.2012
Autor: cey112

Guten Abend.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe Schwierigkeiten eine Gleichung umzuformen und hoffe einer hier kann mir helfen.

Die Gleichung lautet:
[mm] (\vec{a}^{T}\vec{x_{1}}-\vec{a}^{T}\vec{x_{2}})^{2} [/mm]  

soll umgeformt das hier ergeben:
[mm] \vec{a}^{T}(\vec{x_{1}}-\vec{x_{2}})(\vec{x_{1}}-\vec{x_{2}})^{T}\vec{a} [/mm]

Also ich komme da einfach nicht drauf. Habe die Gleichung mal aufgelöst um dann weiter umzuformen, aber leider ohne Erfolg.

Ich hoffe einer hier hat einen Tipp für mich.

Viele Grüße
cey

        
Bezug
VektorGleichung umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Di 21.02.2012
Autor: barsch

Hallo,

es ist [mm]\vec{a}^T*\vec{x_1}-\vec{a}^T*\vec{x_2}=\vec{a}^T*(\vec{x_1}-\vec{x_2})[/mm] und für 2 Vektoren [mm]\vec{a},\vec{b}[/mm] gilt: [mm]\vec{a}^T*\vec{b}=\vec{b}^T*\vec{a}[/mm]

Gruß
barsch


Bezug
                
Bezug
VektorGleichung umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Di 21.02.2012
Autor: cey112

Also irgendwie hilft mir das jetzt nicht weiter.

Wenn ich das jetzt so umforme:

[mm] (\vec{a}^T\cdot{}\vec{x_1}-\vec{a}^T\cdot{}\vec{x_2})^{2}=\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2})^{2} [/mm]

wie komme ich dann weiter ich habe ja noch das hoch 2???

Bezug
                        
Bezug
VektorGleichung umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Di 21.02.2012
Autor: barsch

[willkommenmr] - das habe ich eben vergessen [grins]


> Also irgendwie hilft mir das jetzt nicht weiter.

mmhhh...

>  
> Wenn ich das jetzt so umforme:
>  
> [mm](\vec{a}^T\cdot{}\vec{x_1}-\vec{a}^T\cdot{}\vec{x_2})^{2}=\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2})^{2}[/mm]

Die Umformung ist ja auch nicht richtig. Mein 1. Hinweis lautete: [mm] \vec{a}^T\cdot{}\vec{x_1}-\vec{a}^T\cdot{}\vec{x_2}=\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2}) [/mm]

Also: [mm](\vec{a}^T\cdot{}\vec{x_1}-\vec{a}^T\cdot{}\vec{x_2})^2=(\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2}))^2=\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2})*\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2})[/mm]

Jetzt musst du nur noch den 2. Hinweis verwenden.


> wie komme ich dann weiter ich habe ja noch das hoch 2???

Gruß
barsch


Bezug
                                
Bezug
VektorGleichung umformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Di 21.02.2012
Autor: cey112

Während du die Antwort geschrieben hast, ist mir ein Licht aufgegangen :-)

Also richtig ist es so:

[mm] (\vec{a}^T\cdot{}\vec{x_1}-\vec{a}^T\cdot{}\vec{x_2})^2=(\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2}))^2=\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2})\cdot{}\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2})=\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2})\cdot{}\underbrace{(\vec{x_1}-\vec{x_2})^{T}\cdot{}\vec{a}}_{=\vec{a}^T\cdot{}(\vec{x_1}-\vec{x_2})} [/mm]


Danke nochmal für deine Hilfe.

Viele Grüße
cey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]