www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Untervektorräume, Lineare Abhä
Untervektorräume, Lineare Abhä < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume, Lineare Abhä: Frage
Status: (Frage) beantwortet Status 
Datum: 18:45 Sa 21.05.2005
Autor: Raz

Hallo
Irgendwann werde ich noch wahnsinnig! Ich schreibe nächste Woche eine Klausur in Mathe2 Lehramt Gund/Mittelschule und habe mal wieder keine Ahnung.
Mein Problem sind die Untervektorräume und die lineare Un-abhängigkeit!
Mein Stand: Um reellle Vektorräume zubeweisen, muss man zeigen das es eine abelsche Gruppe ist und das die Skalarmulti. gilt. Aber bei den Untervektorräumen hängt es. Es sind Teilmengen eines Vektorraumes und die Lineare Hülle ist auch so einer aber das hilft mir nicht!????

Danke in Vorraus ich bin für alles dankbar.
Ich habe diese Frage in keinem anderen Forum im Internet gestellt.

        
Bezug
Untervektorräume, Lineare Abhä: Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Sa 21.05.2005
Autor: Raz

Hallo
Ach ja und die Lineare Un- Abhängigkeit kann jemand mir da vieleicht auch helfen? Ich stehe total auf dem Schlauch

Danke Sorry das ich so oft frage





Habe diese Frage in keinem anderen Forum im Internet gestellt

Bezug
        
Bezug
Untervektorräume, Lineare Abhä: Lineare Abhängigkeit
Status: (Antwort) fertig Status 
Datum: 20:00 Sa 21.05.2005
Autor: FabianD

Hallo Raz,
ich glaube deine Frage wäre besser im Hochschul-Bereich aufgehoben.

Mit der linearen (Un-)Abhängigkeit kann ich dir aber weiterhelfen.

Man bezeichnet zwei Vektoren [mm] v_{1} [/mm] und [mm] v_{2} [/mm] als linear abhängig, wenn gilt:
[mm] \vec{v_{1}}=a*\vec{v_{2}} [/mm]
Die Vektoren sind also schlichtweg (anti-)parallel.

Bei mehreren Vektoren darf man keine geschlossene Vektorkette bilden können, sprich (im [mm] R^{3}): [/mm]
[mm] \vec{v_{3}} \not= \lambda*\vec{v_{1}} +\mu*\vec{v_{2}} [/mm]

Es kann also nie mehr linear unabhängige Vektoren als Dimensionen geben.

Lineare Abhängigkeit besteht immer dann, wenn nicht unabhängigkeit besteht ;)
Ich hoffe damit konnte ich dir wenigstens ein Stück weiter helfen.


Bezug
        
Bezug
Untervektorräume, Lineare Abhä: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Sa 21.05.2005
Autor: mathedman


>  Irgendwann werde ich noch wahnsinnig! Ich schreibe nächste
> Woche eine Klausur in Mathe2 Lehramt Gund/Mittelschule und
> habe mal wieder keine Ahnung.
>  Mein Problem sind die Untervektorräume und die lineare
> Un-abhängigkeit!
>  Mein Stand: Um reellle Vektorräume zubeweisen, muss man
> zeigen das es eine abelsche Gruppe ist und das die
> Skalarmulti. gilt.

Ja, so ähnlich. Du wirst hoffentlich nicht Mathe unterrichten?

> Aber bei den Untervektorräumen hängt es.
> Es sind Teilmengen eines Vektorraumes und die Lineare Hülle
> ist auch so einer aber das hilft mir nicht!????

Wo ist denn das Problem?
Eine nichtleere Teilmenge [mm]U \subset V[/mm] ist Untervektorraum, falls
[mm]u \in U \Rightarrow \alpha u \in U[/mm] für alle [mm]\alpha \in K[/mm] und [mm]u,v \in U \Rightarrow u + v \in U[/mm].


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]