www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Untergruppen und Nebenklassen
Untergruppen und Nebenklassen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen und Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Mi 10.07.2013
Autor: Ptolemaios

Aufgabe
Untergruppen und Nebenklassen der multipl. Gruppe [mm]  \IZ_{7} [/mm]  bestimmen.



Hi,

ich wollte mal nachfragen, ob ich das richtig gemacht habe.
Die Elemente der Gruppe und deren Ordnung sind:

Element 1   2   3   4   5   6
Ordnung 1   3   6   3   6   2

Die Untergruppen habe ich so: 
Untergruppe a: <1> = {1} 
Untergruppe b: <6> = {1, 6} 
Untergruppe c: <2> = <4> = {1, 2, 4} 
Untergruppe d: <3> = <6> = {1, 2, 3, 4, 5, 6} 

Die Nebenklassen habe ich so:
NK von a {1}, {2}, {3}, {4}, {5}, {6}
​NK von b {1, 6}, {2, 5} und {3, 4}
​NK von c {1, 2, 4} und {3, 6, 5}
​NK von d {1, 2, 3, 4, 5, 6}

Wäre das korrekt?
Habe ich das richtig verstanden, dass die Ordnung eines Elements gleich der Anzahl der Elemente der Untergruppe ist, z.B. haben die Elemente 2 und 4 die Ordnung 3, also hat deren Untergruppe 3 Elemente? Das neutrale Element, hier die 1, muss in jeder Untergruppe enthalten sein, richtig?
Vielen Dank für eure Hilfe!

Gruß Ptolemaios

        
Bezug
Untergruppen und Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:21 Do 11.07.2013
Autor: felixf

Moin!

> Untergruppen und Nebenklassen der multipl. Gruppe
> [mm] \IZ_{7}[/mm]  bestimmen.
>  
>
> ich wollte mal nachfragen, ob ich das richtig gemacht
> habe.
>  Die Elemente der Gruppe und deren Ordnung sind:
>  
> Element 1   2   3   4   5   6

Oder je nach Definition von [mm] $\IZ_7$ [/mm] auch die Restklassen dieser Zahlen modulo 7.

>  Ordnung 1   3   6   3   6   2

Sieht gut aus. Die multiplikative Gruppe von [mm] $\IZ_p$ [/mm] (mit $p$ prim) ist immer zyklisch, womit man schon genau sagen kann wieviele Elemente welcher Ordnung es gibt (vielleicht hattet ihr das schon, vielleicht auch nicht). Hier bestaetigt das zumindest deine Aussage :)

> Die Untergruppen habe ich so: 
>  Untergruppe a: <1> = {1} 

>  Untergruppe b: <6> = {1, 6} 

>  Untergruppe c: <2> = <4> = {1, 2, 4} 

>  Untergruppe d: <3> = <6> = {1, 2, 3, 4, 5, 6} 

Das ist richtig.

(Weitere Untergruppen gibt es nicht, da jede Untergruppe zyklisch ist.)

> Die Nebenklassen habe ich so:
>  NK von a {1}, {2}, {3}, {4}, {5}, {6}
>  ​NK von b {1, 6}, {2, 5} und {3, 4}
>  ​NK von c {1, 2, 4} und {3, 6, 5}
>  ​NK von d {1, 2, 3, 4, 5, 6}
>  
> Wäre das korrekt?

Ja.

>  Habe ich das richtig verstanden, dass die Ordnung eines
> Elements gleich der Anzahl der Elemente der Untergruppe
> ist, z.B. haben die Elemente 2 und 4 die Ordnung 3, also
> hat deren Untergruppe 3 Elemente? Das neutrale Element,
> hier die 1, muss in jeder Untergruppe enthalten sein,
> richtig?

Das stimmt so alles.

LG Felix


Bezug
                
Bezug
Untergruppen und Nebenklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Do 11.07.2013
Autor: Ptolemaios

Hi Felix,

danke für deine schnelle Antwort, die alles geklärt hat.

Gruß Ptolemaios

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]